
Stefan Rödiger*, Micha l Burdukiewicz and Peter Schierack

Supplement to: “chipPCR: an R Package to Pre-Process Raw Data of

Amplification Curves”

chipPCR

Contents

1 Availability, requirements and setting up a working environment 2

2 Pre-processing raw data for DNA amplification plots 4

3 Functions of the chipPCR package 7

4 AmpSim - a function for simulating amplification curves 8

5 Single-blinded, randomized judging of amplification curves 11

6 Inspection and analysis of data for amplification curves 13
6.1 Data overview - plotCurves . 18

7 Proposed workflow 20

8 Imputation of missing values in amplification curve data - fixNA 22

9 Smoothing and filtering 29

10 bg.max - a function to estimate the start and end of an amplification reaction 33

11 Normalization of amplification curve data 38
11.1 Computing linear model coefficients - Background subtraction based on linear models 40

12 The inder function - an interpolating five-point stencil 42
12.1 Quantitative description of amplification reactions . 42

13 Quantification cycle calculation by the inder function 47
13.1 The inder function in combination with a 5-parameter curve fit function 47

14 Threshold cycle method 49
14.1 Application of the th.cyc function on ccPCR data . 49
14.2 Application of the th.cyc and CPP functions for helicase dependent Amplification 53

15 Amplification efficiency 55

16 Datasets 61

17 Acknowledgment 65

1

Abstract

Background: Both the quantitative real-time polymerase chain reaction (qPCR) and isothermal ampli-
fication are standard methods used for the quantification of nucleic acids (DNA, RNA). Numerous real-time
read-out technologies with different technical platforms have been developed so far. However, analysis of am-
plification curves consists of cascaded steps implemented in a similar manner across all existing technological
platforms. Despite the growing interest in amplification-based techniques, there are only few open source
tools for pre-processing real-time amplification data. The availability of a software for pre-processing raw
amplification data is mandatory in different scenarios, for example during the development, optimization and
improvement of the functionality of instruments.

Results and Conclusion: chipPCR is a versatile R package for pre-processing (e.g., imputation of
missing values, smoothing) and quality analysis of raw data for amplification curves coming from conventional
quantitative polymerase chain reactions (qPCR), and quantitative isothermal amplification (qIA) reactions.
The package contains datasets, which were generated by helicase-dependent amplification (HDA) or poly-
merase chain reaction (PCR) under various temperature conditions and detection systems, such as hydrolysis
probes and intercalating dyes. The structure of the packages is amenable for integration to Web-based and
standalone shiny applications.

1 Availability, requirements and setting up a working environment

Convention: According to the MIQE guidelines (“Minimum Information for publication of Quantitative real-time
PCR Experiments” (Bustin et al., 2009)) is the threshold cycle (Ct) referred to as quantification cycle (Cq).
We use the expression Cq exclusively regardless of the amplification method and mathematical principle. The
abbreviations MFI, RFU and refMFI refer to arbitrary units of mean fluorescence intensities.

The software is available in an R environment or through web browser applications:

• Project name: chipPCR,

• Project homepage (development): https://github.com/michbur/chipPCR,

• Project homepage at CRAN: http://cran.r-project.org/web/packages/chipPCR/index.html,

• Operating System: Platform independent,

• Other requirement: R 3.1.0 or higher,

• License: GPL-3

We use R’s S4 class system (see methods package) to separate the interface and the implementation because,
unlike the R’s S3 class system, it requires the explicit declaration of classes and the inheritance and relationship
for each class or method. Therefore, the number and types of objects in slots in an instance of a class have
to be established at the time of the class definition. Objects belonging to the class are validated against this
definition and have to fulfill it at any time. setGeneric declares generic functions. S4 methods are declared by
calls to setMethod together with the name of generics and signatures of the arguments. Signatures are used for
identification of classes of one or more arguments of the methods.

S4 classes therefore require a higher development effort than S3 classes, but offer more stringent control
over the contents of created objects. Additional information (e.g., results, parameters) can also be included. S4
assures better control on the object structure and chosen method dispatch (Karatzoglou et al., 2004).

For high-throughput capability, we avoided loops in the core structures of the chipPCR package and partially
used parallel computing (smoother function) to keep the code fast. This package supports the use of most popular
R packages, thus providing a communication layer required for parallel computing: parallel and snow.

This vignette can be viewed from R using command: vignette(”chipPCR”). All experimental details for the
datasets are described in the chipPCR package manual and in the citations. To start an analysis it is required
to choose a dataset (as shown below).

Load chipPCR

require(chipPCR)

Load package for table formatting

require(xtable)

Print table

print(xtable(head(C60.amp[, 1L:5]), caption = "First five cycles of imported data."))

All datasets used in the following examples can be loaded similarly. chipPCR relies on the R environment,
and dedicated R packages (e.g., RDML) as default data format and standard import and export formats (Perkins
et al., 2012; Blagodatskikh et al., 2014; R Development Core Team, 2014).

2

Index Vim.0.1 Vim.0.2 Vim.1.1 Vim.1.2
1 0 0.00 0.00 -0.03 -0.03
2 1 0.00 0.00 -0.03 -0.03
3 2 0.00 -0.00 -0.02 -0.02
4 3 -0.00 -0.00 -0.01 -0.01
5 4 -0.00 -0.00 0.01 0.01
6 5 -0.00 -0.00 0.05 0.05

Table S1: First five cycles of imported data.

Graphical user interfaces (GUIs) are important to make software usable for researchers not fluent inR. Several
R GUI projects have been proposed (Rödiger et al., 2012). Selected functionality of chipPCR originates from
RKWard GUI plugins (Pabinger et al., 2014). The shiny framework (RStudio and Inc., 2014) can be used to
build and deploy GUIs for the desktop or as services for interactive web applications on servers. Prerequisites
are an installation of R, with installed shiny and chipPCR packages and a modern web browser. It is possible
to run a GUI in a web browser on a local machine without an Internet connection. Ad-blocking software may
cause malfunctions and should be turned off. shiny enables the building of plugin-like applications with highly
customizable widgets (e.g., sliders) for an efficient extension. shiny applications can be updated live and in
an interactive manner. The user interfaces can be built entirely using R and operates in any R environment
(cross-platform). The functions AmpSim, th.cyc, bg.max and amptester are a part of shiny GUIs. Examples
and case studies for the mentioned functions are presented in the following sections.

3

2 Pre-processing raw data for DNA amplification plots

Quantitative polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard
methods used for amplifying nucleic acids (e.g., genomic DNA, copy DNA) (Pabinger et al., 2014). The Taguchi
methods provide general optimization frameworks used in engineering optimization processes and other related
disciplines. However, applications include PCR application too (Cobb and Clarkson, 1994; Thanakiatkrai and
Welch, 2012). Basically, it is possible to determine the optimal conditions for PCR-based assays. A software
implementation for R is available in the qualityTools package (Roth, 2012). Recently amplification methods
with continuous temperature gradients (e.g., microfluidics, capillary convective PCR (ccPCR)) emerged (Chou
et al., 2011; Rödiger et al., 2014; Spiess et al., 2014). Isothermal amplification is a monocyclic reaction at a
constant temperature. Conversely, PCR is a polycyclic reaction with repeated thermal cycling condition steps
(denaturation, annealing, elongation) and measurements at discrete cycle steps. The curve shape of isothermal
amplification reactions do not necessarily follow an S-shaped structure and the measurement is time-based (con-
tinuous, not mandatory equidistant) in contrast to a cycle-based (discontinuous) measurement of qPCRs. The
number of measure points is usually higher than in qPCR experiments. All these amplification methods are used
in different real-time monitoring technologies, such as our previously reported VideoScan technology (Rödiger
et al., 2013a), microfluidic systems, point-of-care devices, microbead-chip technologies and commercial real-time
thermo cyclers (Chang et al., 2012; Rödiger et al., 2013c, 2014). Real-time technologies enable the quantification
of nucleic acids by calculation of specific curve parameters like the quantification cycle (Cq) and the amplification
efficiency (AE) (Ruijter et al., 2013; Tellinghuisen and Spiess, 2014).

The data quality of experimental instruments is often not suitable for end-user analysis and presentation.
Moreover, analysis of raw data may lead to misinterpretations and false performance estimates under certain
conditions. Therefore, novel technologies usually depend on software for pre-procession of raw data. Pre-
processing specifically addresses raw data inspection, steps to transform raw data in a compatible format for
successive analysis steps (e.g., smoothing, imputation of missing values), data reduction (e.g., removal of invalid
sets), noise reduction and data quality management. Noise is challenging because derivative processes as used
for “cycle of quantification” methods (e.g., Second Derivative Maximum method) leads to an amplification of
noise (Larionov et al., 2005; Tuomi et al., 2010; Rödiger et al., 2013b; Ruijter et al., 2013; Tellinghuisen and
Spiess, 2014). Pre-processing algorithms remove stochastic errors and artefacts (e.g., noise, photo-bleaching ef-
fects, degassing effects, different signal levels) as illustrated in Figure S1. However, misinterpretations are more
likely if arbitrary manual corrections are not performed. A manual alteration is in contradiction to reproducible
research. In particular, open source scientific software and the associated input and output data are central
structural elements to enable recomputability and reproducibility of results (Blanton and Lenhardt, 2014; Jacobs
et al., 2014; Stodden and Miguez, 2014).

R is widely used for the analysis of qPCR data. Most R packages focus on the read-in, processing and
post-processing of datasets originating from commercial qPCR systems. The fundamental steps of amplification
curve analysis are: (1) raw data read-in, (2) amplification curve pre-processing (e.g., noise reduction, outlier
removal), (3) amplification curve processing (e.g., Cq and AE calculation), (4) post-processing and quantification
of secondary parameters (e.g., Delta-Delta-Ct for gene expression analysis), (5) data export, (6) visualization
and (7) report generation. Sophisticated R packages for the steps 1 and 3–7 are available from Bioconductor and
CRAN (Dvinge and Bertone, 2009; Zhang et al., 2010; Heckmann et al., 2011; Perkins et al., 2012; Gehlenborg
et al., 2013; Huntley et al., 2013; Zhang and Zhang, 2013; McCall et al., 2014; Pabinger et al., 2014). However,
there is no R package for pre-processing and quality analysis of raw data for amplification curves. This need also
applies to other existing software solutions (compare (Pabinger et al., 2014)). Pre-processing in most commercial
cyclers is a “black box” model, where inner subroutines are not available for inspection. This approach limits
reproduction of analysis on other platforms and introduces difficulties for transfer of experimental design and
setup or for the adequate use of statistical tools. Moreover, it is desirable to set up work-flows in an open
environment, which enables downstream analyses and offers powerful tools for data visualizations and automatic
report generation.

The chipPCR package was developed to automatize pre-processing, ease data analysis/visualization and offer a
quality control for the statistical data analysis of qPCR or qIA experiments (see Section 3). chipPCR is primarily
targeted at developers of novel systems. Nonetheless, users who process raw data of commercial systems can also
utilize its functionalities.

Use AmpSim to generate amplification curves with 40 cycles

and different Cq's.

res.pos <- AmpSim(cyc = 1:40, noise = TRUE, b.eff = -12, nnl = 0.02)

res.pos[5, 2] <- res.pos[5, 2] * 6

res.low <- AmpSim(cyc = 1:40, noise = TRUE, b.eff = -20, bl = 0.5,

ampl = 0.58, Cq = 33)

4

Add missing value to res.low at cycle 31

res.low[31, 2] <- NA

res.neg <- AmpSim(cyc = 1:40, b.eff = -0.1, bl = 0.05, ampl = 0.4,

Cq = 1, noise = FALSE, nnl = 0.5)

res.pos.CPP <- cbind(1:40, CPP(res.pos[, 1], res.pos[, 2], bg.outliers = TRUE,

smoother = TRUE, method = "smooth", method.norm = "minm",

method.reg = "lmrob")$y)

res.low.NA <- cbind(1:40, CPP(res.low[, 1], res.low[, 2], smoother = TRUE,

method = "smooth", bg.outliers = TRUE, method.norm = "minm",

method.reg = "lmrob")$y)

res.neg.exc <- cbind(1:40, amptester(res.neg[, 2]))

par(mfrow = c(1, 2), las = 0, bty = "n", cex.axis = 1.5, cex.lab = 1.5,

font = 2, cex.main = 1.8, oma = c(1, 1, 1, 1))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, max(res.pos[, 2])),

xlab = "Cycle", ylab = "Raw fluorescence")

mtext("A", cex = 2, side = 3, adj = 0, font = 2)

lines(res.pos, lwd = 2)

lines(res.low, col = 2, lwd = 2)

arrows(38, min(res.low[, 2], na.rm = TRUE), 38, max(res.low[,

2], na.rm = TRUE), code = 3, lwd = 3, angle = 90, col = "grey")

text(38, max(res.low[, 2], na.rm = TRUE) * 0.7, "SNR", cex = 1.2)

arrows(29, 0.42, 31, 0.51, lwd = 2)

text(29, 0.38, "NA", cex = 1.2)

points(res.pos[5, 1], res.pos[5, 2], pch = 21, cex = 4, lwd = 5,

col = "orange")

text(res.pos[5, 1], res.pos[5, 2] * 1.2, "Outlier", cex = 1.2)

lines(res.neg, col = 4, lwd = 2)

text(20, mean(res.neg[, 2]) * 0.9, "No amplification", cex = 1.2,

col = "blue")

plot(NA, NA, xlim = c(1, 40), ylim = c(0, max(res.pos[, 2])),

xlab = "Cycle", ylab = "Pre-processed fluorescence")

abline(h = 0.03, lty = 2, lwd = 2)

mtext("B", cex = 2, side = 3, adj = 0, font = 2)

lines(res.pos.CPP, lwd = 2)

lines(res.low.NA, col = 2, lwd = 2)

lines(res.neg.exc, col = 4, lwd = 2)

legend(1, 1, c("Positive (outlier removed)", "Positive (scaled)",

"Negative", "Threshold line nof Cq"), col = c("black", "red",

"blue", "black"), lty = c(1, 1, 1, 2), lwd = 2, bty = "n")

lines(c(15.1, 15.1), c(-1, 0.03), lwd = 2, col = "black")

text(14, 0.06, "Cq")

lines(c(28.5, 28.5), c(-1, 0.03), lwd = 2, col = "red")

text(27, 0.06, "Cq", col = "red")

5

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cycle

R
aw

 fl
uo

re
sc

en
ce

A

SNR
NA

Outlier

No amplification

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cycle

P
re

−
pr

oc
es

se
d

flu
or

es
ce

nc
e

B

Positive (outlier removed)
Positive (scaled)
Negative
Threshold line nof Cq

Cq Cq

Figure S1: Analysis and interpretation of real-time amplification curves. (A) Before procession: The fluorescence
values are plotted against the cycle, which results in sigmoidal shaped amplification curves (–, –). Measurements
may occasionally contain missing values (“NA”, –) and outliers (orange circle, –), due to noise introduced by the
detection system or sensor errors. Outliers are often present in the first cycle due to sensor adjustments. The
signal difference between the background phase (first cycles) and the plateau phase (last cycles) is quantifiable
as signal-to-noise ratio (SNR). The SNR between different samples (e.g., – and –) can vary. For interpretation
it is recommended to normalize the data. Negative samples (–) need to be identified automatically. (B) Pre-
processed raw data, where NAs were imputed and the noise slightly removed. The curves were adjusted to have
the same baseline and plateau level. The quantification cycles (Cq) of the positive reactions are determined in
the exponential phase (“threshold method” is used in this example). Negative samples are automatically set to
zero.

6

3 Functions of the chipPCR package

The main functions of the chipPCR package are:

• AmpSim: simulatea S-shaped amplification plots based on a 5-parameter model accompanied by Amp-
Sim.gui a shiny GUI, for AmpSim,

• bg.max: detects the start and end of an amplification reaction,

• CPP: easily accesses several pre-processing functions,

• fixNA: imputes missing values in a data column,

• inder: interpolates first and second derivatives interpolation using the five-point stencil (accompanied by
rounder function),

• MFIaggr: analyzes a bulk of replicates of an amplification reaction,

• smoother: smoothens the data for curve plotting by different methods (e.g., moving average, Savitzky-Golay
smoothing).

Additionally, further auxiliary functions are:

• amptester: detects the start and end of an amplification curve,

• effcalc: calculates the amplification efficiency,

• humanrater: rates curves using a graphical interface,

• lm.coefs: computes linear model coefficients,

• normalizer: normalizes data between a user defined range,

• plotCurves: plots many curves on one plot in separate cells allowing for quick assessment,

• th.cyc: calculates the number of cycles for which the fluorescence reporter signal exceeds a defined threshold,
called the threshold cycle (Cq),

These auxillary functions are used for post-processing (e.g., Cq calculation, AE calculation) and quality
analysis. Here we provide more information on the functionality of the chipPCR package. Selected functionality
is used in the RDML (Blagodatskikh et al., 2014) package. Most of the functions are central elements of other
chipPCR functions. For example, fixNA is embedded in most functions to prevent errors due to missing values.

7

4 AmpSim - a function for simulating amplification curves

The AmpSim function simulates amplification reactions. Use cases include teaching, algorithm testing or the
comparison of an experimental system to the predicted (“optimal”) model. AmpSim uses a 5-parameter model
(Equation S1), which is commonly used for the simulation of amplification curves (Ritz and Spiess, 2008; Spiess
et al., 2008; Gerhard et al., 2014).

fluo = bl +
ampl − bl

1 + exp (b.eff ∗ (log cyc− logCq))
(S1)

AmpSim has the intrinsic property to generate unique results if the noise parameter is set to TRUE. This
is due to the addition of normally distributed noise (as per rnorm function from stats package), for identically
replicated noisy dataset random seed (for example set.seed(123)). The amplification curves of Figure S26 A were
generated with the same starting parameter of AmpSim with some noise added. AmpSim.gui is a shiny GUI
(RStudio and Inc., 2014) implementation for AmpSim. A GUI for the simulation and analysis of amplification
reactions can be invoked by pasting the following code snippet in an R console.

Load the shiny package (chipPCR should already be loaded).

Run from a R console following commands.

require(shiny)

Invoke the shiny AmpSim app in the default web browser.

runApp(paste(find.package("chipPCR")[1], "/AmpSim.gui", sep = ""))

Alternatively call shiny app AmpSim from gist

runGist("https://gist.github.com/michbur/e1def41598f1d0c1e2e6")

The function opens a chipPCR webpage in a default web browser (Figure S2). All parameters of the AmpSim
function may be set in the left part of the interface. In addition, the GUI shows some information calculated by
the bg.max function in a summary field and a plot below the simulated amplification curve.

Figure S2: Locally running shiny AmpSim.gui app. (Top) The plot of the AmpSim.gui is shown in a web browser
(Iceweasel, v. 29.0.1) along with the parameters (left panel) and the estimation by the th.cyc function. The
code (“server.R”, “ui.R”) of the shiny app is shown in the right panel. All parameters (e.g., Cq value, baseline) of
the AmpSim function are accessible. (Bottom) Additionally, AmpSim.gui shows the plot output and the textual
results of the bg.max function.

8

AmpSim has several parameters controlling simulation of amplification curves. b.eff and Cq are strongly
connected. Thus changing one of them changes both values. Cq is used to define an approximate Cq value. The
expression “approximate Cq” value is used because the calculated Cq value varies depending on the preferred Cq
quantification method (e.g., second derivative maximum (SDM) method, threshold method). AmpSim is used
to simulate data with noise (based on rnorm, stats), signal-to-noise ratios, photo-bleaching and other influences
on a qPCR reaction. The following example illustrates the use of AmpSim (Figure S3).

Draw an empty plot for 40 cycles with user defined

parameters.

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.1), xlab = "Cycle",

ylab = "RFU")

colors <- rainbow(8)

Create eight amplification curves. The approximate Cqs are

synthesized as temporary Cqs by adding a random value to a

starting Cq of 25. Note: ``noise'' is set TRUE with a level

of nnl = 0.03. This adds some scatter to the amplification

curves.

sim <- sapply(1L:8, function(i) {
Cq.tmp <- 25 + rnorm(1) * 5

tmp <- AmpSim(1:40, Cq = Cq.tmp, noise = TRUE, nnl = 0.03)

lines(tmp, col = colors[i], lwd = 2)

Add the approximate Cq values to the plot

text(3, 1 - i/10, paste("Cq ", round(Cq.tmp, 2)), col = colors[i])

})

AmpSim was used to illustrate the use of inder (Figure S20), the fixNA (Figure S13) and the smoother
(Figure S15) functions.

9

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cycle

R
F

U

Cq 26.65

Cq 29.55

Cq 30.06

Cq 20.42

Cq 22.08

Cq 15.54

Cq 11.2

Cq 26.26

Figure S3: The amplification curves were generated with the AmpSim function. All Cqs are unique since random
values were added to the starting Cq of 25. The parameter noise = 0.03 adds some scatter to the data used for
plotting the amplification curves.

10

5 Single-blinded, randomized judging of amplification curves

Humans show bias towards interpreting data for a particular outcome. A single-blinded and randomized experi-
ment aims to reduce bias in the results. We developed the humanrater function to evaluate the quality of curve
data (e.g., amplification or melting curve data) in a randomized, half-blinded manner. The function allows inter-
active rating of a curve for a certain characteristic. humanrater draws individual graphs of a curve and prompts
an input field for the user. The application of this function are numerous (e.g., comparing the human rating and
the rating of a machine or the rating of several individual experts). A list of designations to characterize the
amplification curve can be specified. The names of elements can be specified (e.g., by short designations used
during rating). Defaults are y for “yes”, a for “ambiguous” and n for “no”. It is possible to supply longer or
shorter designations for lists. In our example, we used humanrater in the RKWard GUI (Figure S4). We aimed
to characterize amplification curves which were randomly drawn from our simulated “testdata” dataset.

Create a set of data to be analyzed by humanrater. The

function AmpSim creates amplification curves which follow a

nearly optimal sigmoidal curve shape or just noise.

testdata <- data.frame(1:35, AmpSim(Cq = 15, noise = TRUE)[,

2], AmpSim(Cq = 25, noise = TRUE)[, 2], rnorm(35), AmpSim(Cq = 35,

noise = TRUE)[, 2], rnorm(35), AmpSim(Cq = 45, noise = TRUE)[,

2])

Use testdata as input for humanrater and assign the results

to the object human.test. check testdata for significance

of amplification in two repeats.

human.test1 <- humanrater(testdata, repeats = 2)

11

Figure S4: Application of humanrater in a working instance of RKWard. humanrater was used to analyze a
row of amplification curves. (A) All data are anonymous and can be randomized during the rating. The number
of repeats for the rating and the categories (e.g., y for “yes”, a for “ambiguous” and n for “no”) can be defined
by the user. The function has an option to present the curves at random (default). (B) The user gets as result
a tabular output, including the result of each run and the conformity of the runs (see table in console).

12

6 Inspection and analysis of data for amplification curves

The following section briefly describes chipPCR functions used for visualizing and analyzing data for amplification
curves. The functionsMFIaggr and plotCurves (Section 6.1) were developed for a rapid and convenient inspection
of raw data. MFIaggr is a powerful analytical and graphical tool for fast multiple comparison of cycle-dependent
signal dispersion and distribution. The continuous response variable y is used to describe the relationships to n
continuous predictor variables xi, where i ∈ {1, ..., n}. Use cases include the comparison of independent reaction
vessels or the analysis of replicate experiments.

The idea is to analyze only a region of interest (ROI) from a dataset as defined by the parameter llul
(lower limit and upper limit). A ROI can be cycles or a time frame. MFIaggr is a relative of the MFIerror
function from the MBmca (Rödiger et al., 2013b) package but allows a finer grained data analysis for specific
parts of a plotted curve. MFIaggr returns an object of the class list with the columns “Cycle”, “Location”
(Mean, Median), “Deviation” (Standard Deviation, Median Absolute Deviation) and “Coefficient of Variation”.
If the option rob is TRUE the function calculates out the median and the median absolute deviation (MAD)
instead of the mean and standard deviation. MFIaggr has The results for the ROI can be invoke by @stats.
The output includes the mean, median, standard deviation (sd), median absolute deviation (mad), inter quar-
tile range (IQR), medcouple (robust measure of skewness), skewness (Pearson’s second skewness coefficient;
skewness = 3 (mean(x) − median(x)) / sd(x)), signal-to-noise ratio (SNR), variance-to-mean ratio (VRM),
number of missing values (NAs) and results from a linear fit of the ROI (intercept, slope, r.squared). We in-
cluded the Breusch-Pagan test to test for heteroskedasticity in a linear regression model (see Section 6). In our
example we analyzed the raw fluorescence from 96 replicates of a qPCR experiment for the human gene vimentin.
The MFIaggr plot shows that the first ten cycles (noise) follow a normal distribution (Figure S5). In contrast,
the analysis of all cycles expectedly shows a distribution, which significantly differs from a normal distribution
(Figure S8). Setting the option CV = FALSE shows the relative standard deviation (RSD, %). The variance
between the amplification curves of replicates should be low. Other results of MFIaggr include the density anal-
ysis (@density), the quantile (@qqnorm.data), and the results of the linear regression (@lm.roi) from the ROI.
In particular, this function might be useful for quality management during the development of high-throughput
technologies.

par(las = 0, bty = "n", cex.axis = 1.2, cex.lab = 1.2, font = 2,

cex.main = 1.2, oma = c(1, 1, 1, 1))

plot(MFIaggr(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],

llul = c(1, 10)), CV = FALSE)

plot(MFIaggr(VIMCFX96_60[, 1], VIMCFX96_60[,

2:ncol(VIMCFX96_60)], llul = c(1,40)), CV = FALSE)

The function can be used to compare two conditions of a qPCR experiment. In our example we tried to spot
differences between a measurement during the annealing phase and the elongation phase (Figure S6).

par(las = 0, bty = "n", cex.axis = 1.2, cex.lab = 1.2, font = 2,

cex.main = 1.2, oma = c(1, 1, 1, 1))

plot(x = MFIaggr(VIMCFX96_60, fluo = c(2L:10)), y = MFIaggr(VIMCFX96_69,

fluo = c(2L:10)))

An analysis via the shiny MFIaggr.gui app is shown in Figure S7.
In our example we analyzed the raw fluorescence from 96 replicates (VIMCFX96 60 dataset) of a qPCR

experiment for the human gene vimentin. The MFIaggr plot shows that the analysis of all cycles is non-normally
distributed (Figure S8).

plot(MFIaggr(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],

llul = c(1, 40)), CV = FALSE)

MFIaggr analyzes the heteroskedasticity. Heteroskedasticity (“hetero” = different, “skedasis” = dispersion)
is present if the variance (error term) is not constant. If the error terms do not have a constant variance, they
are homoskedastic. Analysis of the heteroskedasticity gives insight into the characteristics of a system. In the
following example we compared the VIMCFX96 60 and VIMCFX96 69 datasets both obtained from the same
qPCR run in a Bio-Rad CFX96 during an annealing phase of 60 ◦C and an elongation phase of 69 ◦C, respectively.
The heteroskedasticity increased expectedly during the amplification reaction. The variance in the elongation

13

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

25
00

30
00

35
00

40
00

45
00

50
00

Error plot

M
F

I

D
ev

ia
tio

n:
 S

D

ROI samples: 96
ROI mean : SD

2264.669 ± 38.76287
ROI median : MAD

2267.880 ± 38.62173

Cycle

2150 2200 2250 2300 2350 2400

0.
00

0
0.

00
4

0.
00

8

Density

D
en

si
ty

RFU

ROI cycles: 1 to 10
 bw 8.835 ; N = 960

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3

21
50

22
50

23
50

Normal Q−Q Plot

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles
Breusch−Pagan Test p−value: 0.03628

Figure S5: Sample for analysis using the MFIaggr function. The VIMCFX96 60 dataset (96-well plate cycler
(Bio–Rad CFX96)) was used. Either all or a subset of the cycles (ROI: 1 – 10) or all cycles (ROI: 1 – 40)
(Figure S8) were analyzed. The density plot (right upper panel) and quantile-quantile analysis (right lower
panel) show no normal distribution. Due to the sigmoidal structure of the curve, the density function can be
considered bimodal.

14

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

25
00

30
00

35
00

40
00

45
00

Error plot

M
F

I

D
ev

ia
tio

n:
 S

D

ROI mean : SD:
 A 2239.762 ± 36.01651
 B 2193.998 ± 32.80059

ROI median : MAD:
 A 2236.950 ± 42.68405
 B 2196.940 ± 40.70478

Cycle

● A
B

2100 2150 2200 2250 2300 2350

0.
00

0
0.

00
4

0.
00

8

Density

D
en

si
ty

RFU
ROI cycle 1 to 10 ; 1 to 10

 bw 13.179 ; 12.003
 N = 90 ; 90

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

21
50

22
00

22
50

23
00

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles
Breusch−Pagan Test p−value: A 0.3683; B 0.02361

Figure S6: Analysis of two PCR conditions with the MFIaggr function. The VIMCFX96 60 and VIMCFX96 69
datasets (96-well plate cycler (Bio–Rad CFX96)) were used. A subset of cycles (ROI: 2 – 10) was analyzed
for a qPCR measured during the annealing phase and elongation phase. The density plot (right upper panel)
and quantile-quantile analysis (right lower panel) show no normal distribution. The measurements during the
annealing phase and elongation phase show a similar distribution but differ in their mean fluorescence intensity
(MFI) levels.

15

Figure S7: Example of shiny MFIaggr.gui app. (Top) The plot of the AmpSim.gui is shown in a web browser
(Iceweasel, v. 32.0) along with the parameters (left panel) and the code (“server.R”, “ui.R”).

phase (Figure S8C and D) was lower than in the annealing phase (Figure S8A and B). The heteroskedasticity
was significant during the first 15 cycles at 60 ◦C (Figure S8A).

par(mfrow = c(2, 2), bty = "n")

Create a helper function 'hsk.test' to analyze the

heteroskedasticity and the variance.

hsk.test <- function(x, y, llul = c(1, 15), main = "") {
res <- MFIaggr(x, y, llul = llul)

head(res)

plot(res[, 1], res[, 3]^2, xlab = "Cycle", ylab = "Variance of refMFI",

xlim = llul, ylim = c(min(res[llul[1]:llul[2], 3]^2),

max(res[llul[1]:llul[2], 3]^2)), main = main, pch = 19,

type = "b")

abline(v = llul, col = "grey", lty = 2, lwd = 2)

legend("top", paste0("Breusch-Pagan test p-value: \n", format(summary(res,

print = FALSE)[14], digits = 2)), bty = "n")

}

hsk.test(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],

16

●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●

0 10 20 30 40

25
00

30
00

35
00

40
00

45
00

50
00

Error plot

M
F

I

D
ev

ia
tio

n:
 S

D

ROI samples: 96
ROI mean : SD

3441.116 ± 1113.623
ROI median : MAD

3248.725 ± 1453.697

Cycle

2000 3000 4000 5000 6000

0e
+

00
4e

−
04

8e
−

04

Density

D
en

si
ty

RFU

ROI cycles: 1 to 40
 bw 192.36 ; N = 3840

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

25
00

35
00

45
00

55
00

Normal Q−Q Plot

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles
Breusch−Pagan Test p−value: 0.4748

Figure S8: Signal analysis using the VIMCFX96 60 dataset (96-well plate cycler (Bio-Rad CFX96)). All cycles
(ROI: 1 – 40) were analyzed by the MFIaggr function. The density plot (right upper panel) and quantile-quantile
analysis (right lower panel) show no normal distribution. Owing to the sigmoidal structure of the curve, the
density function can be considered bimodal.

17

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

2 4 6 8 10 12 14

11
00

12
00

13
00

14
00

15
00

16
00

ROI Cycle 1 to 15
Annealing phase

Cycle

V
ar

ia
nc

e
of

 r
ef

M
F

I

Breusch−Pagan test p−value:
0.12

A

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
20

00
0

60
00

0
10

00
00

ROI Cycle 1 to 40
Annealing phase

Cycle

V
ar

ia
nc

e
of

 r
ef

M
F

I

Breusch−Pagan test p−value:
0.47

B

●

●

●

●
●

●

●
●

● ●

●
● ●

●

●

2 4 6 8 10 12 14

85
0

95
0

10
50

11
50

ROI Cycle 1 to 15
Elongation phase

Cycle

V
ar

ia
nc

e
of

 r
ef

M
F

I

Breusch−Pagan test p−value:
0.041

C

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
10

00
0

30
00

0

ROI Cycle 1 to 40
Elongation phase

Cycle

V
ar

ia
nc

e
of

 r
ef

M
F

I

Breusch−Pagan test p−value:
0.39

D

Figure S9: Use of MFIaggr to test for heteroskedacity. The data were aggregated with the MFIaggr function and
assigned to the object res. The standard deviation was transformed to the variance. The plot shows the cycle
dependent variance measured at 60 degrees Celsius (annealing phase; A, B) and 69 degrees Celsius (elongation
phase, C, D) of 96 qPCR replicate amplification curves. The first cycles 1 to 10 and next the cycles 1 to 40 were
analyzed. The Breusch-Pagan test of the MFIaggr confirmed the heteroskedasticity in the amplification curve
data. The VIMCFX96 60 and VIMCFX96 69 datasets were used.

llul = c(1, 15), main = "ROI Cycle 1 to 15\nAnnealing phase")

mtext("A", cex = 2, side = 3, adj = 0)

hsk.test(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],

llul = c(1, 40), main = "ROI Cycle 1 to 40\nAnnealing phase")

mtext("B", cex = 2, side = 3, adj = 0)

hsk.test(VIMCFX96_69[, 1], VIMCFX96_69[, 2:ncol(VIMCFX96_69)],

llul = c(1, 15), main = "ROI Cycle 1 to 15\nElongation phase")

mtext("C", cex = 2, side = 3, adj = 0)

hsk.test(VIMCFX96_69[, 1], VIMCFX96_69[, 2:ncol(VIMCFX96_69)],

llul = c(1, 40), main = "ROI Cycle 1 to 40\nElongation phase")

mtext("D", cex = 2, side = 3, adj = 0)

6.1 Data overview - plotCurves

plotCurves visualizes many curves on one plot in separate cells allowing quick assessment of experiments (Fig-
ure S10). In addition to this, plotCurves has an option to run an unsupervised CPP pre-processing step on the
raw data. This smooths the data (Savitzky-Golay smoothing), removes missing values (spline interpolation by
default) and performs a background subtraction (base-lining to zero). plotCurves has a colored indicator for
rapid visualization of dataset with potentially problematic amplification curves. The plot output is arranged in

18

A1

0
10

00
20

00
30

00
40

00

A2

0
10

00
20

00
30

00
40

00

0 10 20 30 40

A3

A4

0 10 20 30 40

A5

A6

0 10 20 30 40

A7

A8

0 10 20 30 40

Figure S10: The plotCurves function. Notice: The function plots many curves on one plot in separate cells
allowing for quick assessment. Missing values were artificially introduced at random positions to selected curves
of the VIMCFX96 60 data set (solid black line). A colored box (topleft of each plot) indicates the sample name
and if the data contain missing values. The red rug indicates the position of the missing values. The red lined
shows the amplification curve after unsupervised pre-processing (using an instance of CPP).

a table-like fashion, where each curve is presented in a different cell.

y <- VIMCFX96_60[, 2L:9]

Introduce some missing values.

y[c(10, 22, 3, 25, 26, 15, 27, 23, 4), c(5, 7, 4, 2, 1)] <- NA

Show plot with raw data and missing values (black line) and

show plots with pre-processed data and imputed missing

values (red line).

plotCurves(VIMCFX96_60[, 1], y, nrow = 2, type = "l", CPP = TRUE)

19

7 Proposed workflow

In the previous section we showed different methods for investigating specific properties of the measured data.
Next, we focused on pre-processing methods of the chipPCR package. Here, we wish to state only function names
and give some information on their working principle. Details will be explained in the subsequent sections in
order to avoid confusion of the reader. We show the application of the CPP function, as a proposed workflow
for customized pre-processor functions. Data were taken from the VIMCFX96 60 data set. This dataset was
measured with a Bio-Rad CFX96 thermo-cycler with 96 replicates (see chipPCRmanual for experimental details).

The CPP function is a wrapper for pre-processing algorithms, which includes normalization, background sub-
traction, outlier removal using the (fixNA function) in the background range and tests for positive amplification
reactions. CPP uses the bg.max function to automatically estimate the start of the amplification process. The
background range is often noisy, which makes it hard to determine a meaningful background value. Therefore,
CPP can optionally remove outliers by finding the value with the smallest and largest difference from the mean as
provided by the rm.outlier function from the outlier package (Komsta, 2011). rm.outlier detects these outliers
by a simple rule without statistical testing and replaces them by the sample mean. Outliers herein refer to the
smallest and largest value, which has maximum difference from the sample mean. The slope of the background
range is often unequal to zero. By setting the parameter trans it is possible to apply a simple correction of the
slope. This slope correction can either be done by a robust linear regression that computes MM-type regression
estimators, or by a nonparametric rank-based estimator or a standard linear regression model. CPP uses by
default a robust linear regression (MM-type estimator) as integrated in the lm.coefs function. A defined range
of the amplification curve (typically the background range) is used to extrapolate the linear trend over the entire
dataset. However, this step has to be performed with caution since this operation affects the AE. The back-
ground is assumed to be constant for the entire measurement. Caution is needed when using trans with time
series (see lm from the stats package for details). Additionally, all data are normalized between the minimum
and maximum. This is taken care of by the normalizer function. Smoothing of the data is finally done based
on an instance of the smoother function. By default, a Savitsky-Golay filter was used to smooth the data. The
following code is a representative example for the use of CPP (Figure S11). Note that warnings in following code
chunks were suppressed.

layout(matrix(c(1, 2, 3, 3), 2, 2, byrow = TRUE), respect = TRUE)

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

th.cyc.raw <- apply(VIMCFX96_60[, -1], 2, function(i) {
th.cyc(VIMCFX96_60[, 1], i, r = 2575)[1, 1]

})

res.CPP <- apply(VIMCFX96_60[, -1], 2, function(i) {
CPP(VIMCFX96_60[, 1], i, trans = TRUE, method.norm = "minm")[["y.norm"]]

})

th.cyc.CPP <- apply(res.CPP, 2, function(i) {
th.cyc(VIMCFX96_60[, 1], i, r = 0.1)[1, 1]

})

matplot(VIMCFX96_60[, -1], type = "l", pch = 19, col = 1, lty = 1,

xlab = "Cycle", ylab = "Raw fluorescence", main = "Raw")

abline(h = 2575, lty = 2)

mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

matplot(res.CPP, type = "l", pch = 19, col = 1, lty = 1, xlab = "Cycle",

ylab = "Fluorescence", main = "CPP")

abline(h = 0.1, lty = 2)

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

boxplot(data.frame(Raw = th.cyc.raw, CPP = th.cyc.CPP), ylab = "Cq (Ct)",

notch = TRUE)

mtext("C", cex = 1.2, side = 3, adj = 0, font = 2)

20

0 10 20 30 40

25
00

35
00

45
00

55
00

Raw

Cycle

R
aw

 fl
uo

re
sc

en
ce

A

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CPP

Cycle

F
lu

or
es

ce
nc

e

B

●

●

●●●●

Raw CPP

16
.5

17
.0

17
.5

18
.0

C
q

(C
t)

C

Figure S11: Application of the CPP and th.cyc functions. A) The raw data of the VIMCFX96 60 dataset were
B) pre-processed with the CPP function and finally plotted. The parameter trans was set to TRUE, which
leads to a linear trend correction and base-lining. By default a Savitzky-Golay filter was used to smooth the data.
The data were normalized between 0 and 1 (method.norm =′ minm′). C) All Cqs were calculated with th.cyc
function. The Cq for the raw data was 17.25± 0.5 (at r = 2575) and 17.1± 0.1 (at r = 0.1) for the pre-processed
data. Our results indicate that the dispersion of the Cq values was slightly lower for the pre-processed data.

21

8 Imputation of missing values in amplification curve data - fixNA

Experimental technologies may produce missing values (NA) at random due to sensor drop-outs or other technical
difficulties. Upon ecnountering a missing value, many analytical functions stop to progress or discard entire
datasets. Such a conduct is reasonable in cases where the data structure is unknown. However, in the case of
data used for plotting amplification curves, it is justified to impute NAs because the structure generally resembles
an S-shaped curve. Standard approaches include substitution with most frequent values, mean value imputation,
last value carried forward, bootstrapping, or substitution by correlation with replicate measurements (Harrell,
2001). In the case of amplification curves other approaches are favorable. In particular, the transition phases
(e.g., background phase to exponential phase) are potentially prone to bias.

The NAs may be caused by detector problems, acquisition error or other assorted problems. There are different
ways to handle missing values. One approach is to ignore NAs, which is generally acceptable. However, in case of
further calculation it is often necessary to handle cases of missing values in a way that the next calculation steps
can be performed. Missing values can be eliminated by a imputation, which encompasses various approaches.
This includes calculating a location parameter (e.g., mean, median) or other significant values (e.g., minimum,
maximum, modus) of a data column. However, in non-linear processes such as amplification processes its is
reasonable to estimate the missing values from a trend.

The function fixNA imputes missing values in a single column of data (response) either by linear approximation
or an approximation by cubic splines (default) (Figure S13). Other smoothing functions such as the Savitzky-
Golay smoothing filter have the intrinsic capability to remove missing values (Savitzky and Golay, 1964; Eilers,
2003). However, such functionality is not yet implemented in this package. This linear approach is useful but
may be problematic on the phases other than background or plateau phases of an amplification reaction. The
parameter spline of fixNA enables a trend estimation on cubic splines and may be more appropriate in most
scenarios.

The reps384 dataset from the qpcR package (Spiess, 2014) was used to compare the influence of imputation on
real-world data. The experimental details have been described in (Ruijter et al., 2013). The dataset consists of
379 replicate amplification curves (see documentation of the qpcR package for details). Our in-silico experiment
was designed as followed: Either one or three missing values were artificially added to each amplification curve at
random positions. We separated the amplification curve into three different regions (“Linear phase” (cycle 1 – 10),
“Exponential phase” (cycle 11 – 34) and “Plateau phase” (cycle 34 – 40), Figure S12) and investigated the impact
on the qPCR parameters “Cq (SDM, Cy0)” and curve background parameter bg. The background was calculated
as mean and standard deviation. The performance of the imputed models was analyzed with the goodness-of-fit in
this region by the commonly used normalized root-mean-squared-error (NRMSE). We compared the imputation
by “linear approximation” (fixNA(x, y, spline = FALSE)) and “spline approximation” (fixNA(x, y, spline =
TRUE)). Our results show that imputation with the spline method worked reliably and introduced no significant
bias to all the investigated parameters. The Kruskal-Wallis rank sum test (kruskal.test, stats package (R Core
Team, 2013)) was used to compare the linear and spline-based imputation.

Our in-silico experiments showed that cubic spline interpolation yielded the most probable values and there-
fore led to the least effect on tested statistical parameters (Cq, background signal, Pearson correlation coefficient)
on the exponential phase and is therefore the recommended approach to remove missing values (Figure S12).
We observed no significant bias using cubic spline interpolation (Table ??). The performance of fixNA using
cubic splines was better than a linear interpolation (Figure S13). However, the linear approximation might be
applicable in measurements with high sampling rates (e.g., isothermal amplification) (not shown). Any method
requires a minimum number of data points as foundation for a meaningful imputation. fixNA attempts to take
care of such pitfalls. By rule of thumbs we determined that the number of missing elements in relation to the
total number of elements should not exceed 30 %. In a case where more than 30 % of all values are NAs, the
fixNA function gives a warning.

Our results for the given experimental setting support the following statements. (I) The imputation of
missing values by spline interpolation and linear methods introduce no significant bias on the tested parameters
“Cq (SDM, Cy0)”, “bg” and the accompanied quality measure NRMSE (Table ??). (II) We found that the
difference between the linear and spline imputation method is negligible (p 1).

library(qpcR)

library(chipPCR)

cols <- adjustcolor(2:4, 0.6)

plot(NA, NA, xlim = c(1, 45), ylim = c(min(reps384[, -1]), max(reps384[,

-1])), col = 1, pch = 19, type = "b", xlab = "Cycle", ylab = "Fluorescence")

rect(0.8, min(reps384[, -1]), 10.2, max(reps384[, -1]), border = NA,

col = cols[1])

rect(10.8, min(reps384[, -1]), 33.2, max(reps384[, -1]), border = NA,

col = cols[2])

22

0 10 20 30 40

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

Cycle

F
lu

or
es

ce
nc

e

Figure S12: Inspection of the reps384 dataset. The reps384 dataset was used for the analysis of the impact
of imputed missing values. Three areas of the curve data were defined as “Linear phase” (red, cycle 1 – 10),
“Exponential phase” (blue, cycle 11 – 33), “Plateau phase” (green, cycle 34 – 40).

rect(33.8, min(reps384[, -1]), 45, max(reps384[, -1]), border = NA,

col = cols[3])

apply(reps384[, -1], 2, function(i) lines(reps384[, 1], i))

NULL

Simulation of an ideal amplification curve with 40 cycles

The other parameter of the AmpSim function are identical to

the default.

res <- AmpSim(cyc = 1:40)

Introduce a missing value (cycle 18) in the transition

between the background and the exponential phase.

res.NA <- res

res.NA[18, 2] <- NA

Helper function to highlight the position of the missing

value.

abliner <- function(x1 = 17.5, x2 = 18.5, y1 = 0.09, y2 = 0.14) {
abline(v = c(x1, x2), col = "red")

abline(h = c(y1, y2), col = "red")

}

23

par(las = 0, mfrow = c(2, 2), bty = "n")

plot(res, xlab = "Cycles", ylab = "refMFI", type = "b", pch = 20,

main = "Without NA")

abliner()

mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

res.NA.linear <- fixNA(res.NA[, 1], res.NA[, 2], spline = FALSE,

verbose = FALSE)

plot(res.NA, xlab = "Cycles", ylab = "refMFI", type = "b", pch = 20,

main = "With NA during transition")

abliner()

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

res.NA.spline <- fixNA(res.NA[, 1], res.NA[, 2], spline = TRUE,

verbose = FALSE)

plot(res.NA.linear, xlab = "Cycles", ylab = "refMFI", type = "b",

pch = 20, main = "Linear imputed\n NA")

abliner()

mtext("C", cex = 1.2, side = 3, adj = 0, font = 2)

plot(res.NA.spline, xlab = "Cycles", ylab = "refMFI", type = "b",

pch = 20, main = "Spline imputed\n NA")

abliner()

mtext("D", cex = 1.2, side = 3, adj = 0, font = 2)

par(mfrow = c(1, 1))

24

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

Without NA

Cycles

re
fM

F
I

A

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

With NA during transition

Cycles

re
fM

F
I

B

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

Linear imputed
 NA

Cycles

re
fM

F
I

C

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

Spline imputed
 NA

Cycles

re
fM

F
I

D

Figure S13: Imputation of missing values in the data for generating amplification curves. (A) Raw data were
generated using the AmpSim simulation function. (B) A missing value was introduced in the transition phase.
The missing value was imputed either by (C) linear approximation or (D) a cubic spline approximation. The
spline approximation nearly reconstituted the original curve.

25

Evaluation of fixNA by introducing missing values and

comparing efficiency measures for imputed and raw data

library(qpcR)

library(chipPCR)

linear_range <- 1L:10

exponential_range <- 11L:33

plateau_range <- 34L:45

raw.eff <- t(sapply(2L:ncol(reps384), function(i) {
fit.raw <- pcrfit(reps384, cyc = 1, fluo = i)

c(cpD2.raw = efficiency(fit.raw, type = "cpD2", plot = FALSE)[["cpD2"]],

Cy0.raw = efficiency(fit.raw, type = "Cy0", plot = FALSE)[["Cy0"]],

background = mean(reps384[1L:5, i]))

}))

calculate raw efficiency measures

raw.df <- as.vector(apply(raw.eff, 2, function(i) c(mean(i),

sd(i))))

reformat raw data

raw.df <- cbind(data.frame("none", 0, "-"), t(raw.df))

colnames(raw.df) <- c("Imputation", "NA.number", "Phase", "cpD2.mean",

"cpD2.sd", "Cy0.mean", "Cy0.sd", "background.mean", "background.sd")

helper function introducing NA into data, fixing them and

calculating efficiency

gen.fix <- function(number_points, phase, spline) {
copy raw data

temp_dat <- reps384[, -1]

introduce NA(s)

for (i in 1L:ncol(temp_dat)) temp_dat[sample(phase, 1), i] <- NA

impute missing values using fixNA

fixed_dat <- sapply(1L:ncol(temp_dat), function(i) fixNA(reps384[,

1], temp_dat[, i], spline = spline))

compute efficiency measures

t(sapply(2L:ncol(fixed_dat), function(i) {
fit.fix <- pcrfit(cbind(reps384[, 1], fixed_dat), cyc = 1,

fluo = i)

c(cpD2.fix = efficiency(fit.fix, type = "cpD2", plot = FALSE)[["cpD2"]],

Cy0.fix = efficiency(fit.fix, type = "Cy0", plot = FALSE)[["Cy0"]],

background = mean(fixed_dat[1L:5, i]))

}))
}

calculate results for linear imputation

res.linear <- lapply(c(1, 3), function(number_of_points) lapply(list(linear_range,

exponential_range, plateau_range), function(phase) apply(gen.fix(number_of_points,

phase, FALSE), 2, function(i) c(mean(i), sd(i)))))

linear.df <- data.frame(num = unlist(lapply(c(1, 3), rep, 3)),

region = rep(c("linear", "exponential", "plateau"), 2), do.call(rbind,

lapply(unlist(res.linear, recursive = FALSE), as.vector)))

calculate results for spline imputation

res.spline <- lapply(c(1, 3), function(number_of_points) lapply(list(linear_range,

exponential_range, plateau_range), function(phase) apply(gen.fix(number_of_points,

26

phase, TRUE), 2, function(i) c(mean(i), sd(i)))))

spline.df <- data.frame(num = unlist(lapply(c(1, 3), rep, 3)),

region = rep(c("linear", "exponential", "plateau"), 2), do.call(rbind,

lapply(unlist(res.linear, recursive = FALSE), as.vector)))

join and format results

sim.res <- cbind(unlist(lapply(c("linear", "spline"), rep, 6)),

rbind(linear.df, spline.df))

colnames(sim.res) <- c("Imputation", "NA.number", "Phase", "cpD2.mean",

"cpD2.sd", "Cy0.mean", "Cy0.sd", "background.mean", "background.sd")

join simulation results with results for raw data

fixNA.evaluation <- rbind(raw.df, sim.res)

xtable(fixNA.evaluation[, c(1L:7)], digit = 4)

xtable(fixNA.evaluation[, c(1L:3, 8L:9)], digit = 4)

Imputation NA.number phase cpD2.mean cpD2.sd Cy0.mean Cy0.sd
1 none 0.0000 - 19.2931 0.1464 11.1806 1.1326
2 linear 1.0000 linear 19.2932 0.1466 11.1801 1.1337
3 linear 1.0000 exponential 19.2875 0.1472 11.1631 1.1351
4 linear 1.0000 plateau 19.2932 0.1469 11.1814 1.1336
5 linear 3.0000 linear 19.2929 0.1468 11.1803 1.1339
6 linear 3.0000 exponential 19.2878 0.1465 11.1636 1.1351
7 linear 3.0000 plateau 19.2932 0.1466 11.1815 1.1335
8 spline 1.0000 linear 19.2932 0.1466 11.1801 1.1337
9 spline 1.0000 exponential 19.2875 0.1472 11.1631 1.1351
10 spline 1.0000 plateau 19.2932 0.1469 11.1814 1.1336
11 spline 3.0000 linear 19.2929 0.1468 11.1803 1.1339
12 spline 3.0000 exponential 19.2878 0.1465 11.1636 1.1351
13 spline 3.0000 plateau 19.2932 0.1466 11.1815 1.1335

Table S2: Results of fixNA data imputation, part 1: cpD2 and Cy0. NA column determines how many NA values
were introduced in a given phase.

Imputation NA.number phase background.mean background.sd
1 none 0.0000 - 4567.5648 184.7082
2 linear 1.0000 linear 4568.2296 184.7895
3 linear 1.0000 exponential 4568.0775 184.6828
4 linear 1.0000 plateau 4568.0775 184.6828
5 linear 3.0000 linear 4568.2859 184.5738
6 linear 3.0000 exponential 4568.0775 184.6828
7 linear 3.0000 plateau 4568.0775 184.6828
8 spline 1.0000 linear 4568.2296 184.7895
9 spline 1.0000 exponential 4568.0775 184.6828
10 spline 1.0000 plateau 4568.0775 184.6828
11 spline 3.0000 linear 4568.2859 184.5738
12 spline 3.0000 exponential 4568.0775 184.6828
13 spline 3.0000 plateau 4568.0775 184.6828

Table S3: Results of fixNA data imputation, part 2: background. NA column determines how many NA values
were introduced in a given phase.

27

Figure S14: Imputation of missing values in data for plotting amplification curves by splines and linear trends.
Missing values were artificially introduced into the reps384 dataset from the qpcR package and imputed by the
fixNA function. We found no significant difference between raw data and data with imputed missing values. R2

and correlation coefficients of curves were close to 1 with p-value < 10−6.

28

9 Smoothing and filtering

For data presentation it is often useful to smooth or filter the data. Smoothing and filtering are different
approaches with similar goals. Both pre-process an input signal as output for subsequent analysis steps. Filtering
uses methods of signal processing and takes a data input and applies a function to form an output. Smoothing
in contrast uses statistical approaches, like local regression models (e.g., least square estimate) or cubic splines.
We developed the smoother function, which is a wrapper for smoother functions and filters commonly used to
process data for amplification curves. smoother inherited traits (Table 9) of the parent functions (Spiess et al.,
2014). However, the functionality of smoother greatly outgrows applications only in amplification curve analysis.
Incorporating most of the best proven algorithms, we offer the user a powerful tool to access the methods while
minimizing the drawback of learning the syntax of specific functions. smoother was enhanced by the functionality
of fixNA and CPP. Figure S15 shows results of the smoother function on data used for amplification curves.

Simulate and amplification curve with the AmpSim function

tmp <- AmpSim(cyc = 1:35, bl = 0)

par(las = 0, bty = "n", cex.axis = 1.5, cex.lab = 1.5, font = 2,

cex.main = 1.8, oma = c(1, 1, 1, 1), fig = c(0, 1, 0.55,

1))

plot(tmp, type = "b", col = 1, pch = 20, xlab = "", ylab = "RFU",

main = "Raw data")

mtext("A", cex = 2, side = 3, adj = 0, font = 2)

Apply all (parameter method = 'all') smoothers/filter with

the default setting to the amplification curve of the

object tmp. Smoothers / Filters: Savitzky-Golay smoothing

filter locally-weighted polynomial regression moving

average, windowsize 3 cubic spline smooth standard cubic

spline smooth Friedman's SuperSmoother weighted Whittaker

smoothing with first order finite difference penalty

weighted Whittaker smoothing with a second order finite

difference penalty

res <- smoother(tmp[, 1], tmp[, 2], method = "all", CPP = FALSE)

Calculate the difference between the ideal curve (tmp) and

the smoothed curves (res) and assign the results to the

object res.out

res.out <- cbind(cycle = tmp[, 1], tmp[, 2] - res)

Plot the smoothed curves

par(fig = c(0, 1, 0, 0.65), new = TRUE)

plot(NA, NA, type = "b", col = 2, pch = 15, xlim = c(1, 35),

ylim = c(-0.1, 0.1), xlab = "Cycle", ylab = "delta refMFI (raw - smoothed)",

main = "Smoothed / Filtered data")

mtext("B", cex = 2, side = 3, adj = 0, font = 2)

legend(1.5, 0.1, ncol = 2, colnames(res.out[, 2:9]), pch = 15:22,

lwd = 2, col = c(2:9))

Plot the results.

tmp <- sapply(2:9, function(i) {
lines(res.out[, 1], res.out[, i], type = "b", col = i, pch = i +

13)

})

The presence of noise may cause many false estimates for the FDM (first derivative maximum) and SDM
(second derivative maximum). To reduce noise, it is possible to smooth the first derivative of the amplification
curve. Many methods integrated the moving average as a first pre-processing step (e.g., (Shain and Clemens,
2008)). The moving average filter is a linear filter, which sequentially replaces data points with the average of
the neighbor data points. The average is calculated from a defined span (“window”) of odd count (e.g., 3, 5).
The “average” herein may refer to the arithmetic mean, the median, the geometric or the exponential mean. The

29

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Raw data

R
F

U

A

0 5 10 15 20 25 30 35

−
0.

10
0.

00
0.

05
0.

10

Smoothed / Filtered data

Cycle

de
lta

 r
ef

M
F

I (
ra

w
 −

 s
m

oo
th

ed
) B

●

●

●

●

lowess
mova
savgol
smooth

spline
supsmu
whit1
whit2

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●● ●

Figure S15: Smoother and filter methods of the chipPCR package. (A) Raw data were generated using the
AmpSim simulation function. (B) The difference of the raw data to the smoothed data was plotted. “savgol”
(Savitzky-Golay smoothing), “lowess” (locally-weighted polynomial regression), “mova3” (moving average with
window size of 3), “smooth” (cubic smoothing spline), “spline” (Interpolating cubic spline), “supsmu” (Friedman’s
SuperSmoother), “whit1” (weighted Whittaker smoothing with a finite difference penalty of order 1), “whit2”
(weighted Whittaker smoothing with a finite difference penalty of order 2). The “savgol”, “smooth”, “spline”
“whit1” , and “whit2” nearly preserved the original curve. The other functions resulted in alterations in the
transition phases of the amplification curve. Optimized time series smoother, like the Kalman filter (Tusell,
2011), are not yet integrated in this package.

30

smoother function uses exclusively the arithmetic mean. The moving average is intuitive and easy to implement.
However, such processed data lags behind a trend and ignores rapid changes, leading to a forerun of few cycles
(Spiess et al., 2014). This is in particular problematic during the exponential phase. Splines apply non-parametric
regression by local cubic polynomials between knot points (Nie and Racine, 2012). Other examples for smoothers
include the Savitzky-Golay smoothing filter, Friedman’s SuperSmoother, and the Weighted Whittaker smoother
(see the smoother function for details).

Selected smoothing and filtering functions (e.g., Savitsky-Golay filter) assume uniform (equally spaced) sam-
pling. The function smoother and CPP (inherited from smoother) give a warning in such cases. It is recom-
mended to pre-process the data to have equally spaced values. The smoother function enables users to tune the
behavior of the chosen smoothing algorithm by using nearly all parameters available in called subroutines and
at the same time uniformizes input and output. It should be noted that smoothing may alter the curve shape
and thus lead to artificial results. Smoothed data are easier to read but introduce a bias to the pre-processed
data. Therefore, the prime use of smoothers is in processing data for visualization purposes. However, it is not
recommended to smooth unsupervised signals prior to statistical procedures (e.g., least-squares curve fitting). All
smoothing algorithms are “lossy” to a certain extent and may change the curve shape significantly. In particular,
the residual evaluation of a fit may lead to false prediction, because noise after smoothing may be mistaken for
signal. Signals obtained after curve smoothing can be used to locate peaks, but such a procedure should be used
cautiously for measuring peaks (Spiess et al., 2014).

31

Table S4: Smoothing and filtering methods of the chipPCR package. The parameter lowess (locally-weighted
polynomial regression, LOWESS) can be adjusted by the parameters f and iter. The parameter mova (mov-
ing average) can be adjusted by the windowsize parameter movaww. The parameter savgol (Savitzky-Golay
smoothing filter) can be adjusted by the parameter p. The parameter smooth (cubic spline smooth) can be
adjusted by the parameter df.fact. A df.fact value of 1 smooths the data least while a value of 0.5 smooths the
curve most. The parameter spline (standard cubic spline smooth) has no additional parameter. The parameter
supsmu (Friedman’s SuperSmoother) can be adjusted by the parameter span. The parameter whit1 (first order
finite difference penalty) and whit2 (second order finite difference penalty) for Weighted Whittaker smoothing
filter can be adjusted by the parameter lambda. For further details on the smoothers refers to the documentation
of their parent functions.

Method Parameter value Parent
LOWESS lowess f lowess, stats
Cubic spline smooth df.fact smooth.spline, stats
Interpolating Splines spline - spline, stats
Friedman’s “super smoother” supsmu span supsmu, stats
Savitsky-Golay savgol - sgolayfilt, signal
Moving Average mova movaww (3, 5, ...) filter, stats
Whittaker whit1, whit2 lambda whit1, whit2, ptw
All smoother all defaults

32

10 bg.max - a function to estimate the start and end of an amplifi-

cation reaction

The following paragraphs describe methods used in literature to detect the background range of amplification
curves. Background range herein refers to a level of reporter fluorescence signal measured before any specific
amplification is detectable. The raw data (e.g., fluorescence intensity) measured after each step (cycle or time
point) follow a non-linear progress. Currently none of them is implemented in R function. The easiest way to
classify them is by the extend of assumptions made before applying of a method.

The simplest approach is to treat the background fluorescence as a value constant during the whole ampli-
fication reaction. In this case the noise could be approximated as the mean or median of fluorescence values in
the lag phase (Frank, 2009) or their standard deviations (Peirson et al., 2003). The more sophisticated way of
approximating constant background fluorescence requires optimizing its value to achieve linearity of the model
fit on the semi-logarithmic plot in the log-linear phase (Frank, 2009). The later procedure is greatly enhanced by
performing further computations only on a subset of consecutive measurements for which calculated efficiencies
have the lowest variance. Other methods invoke the assumption that background fluorescence is a constant value
and instead describe it as a function of the cycle number. The algorithm in SoFar (Wilhelm et al., 2003) fits a
nonlinear saturation function to points measured before the start of the exponential growth phase. Parameters
of the saturation function are chosen to minimize the sum of squared residuals of the fitted function. Then the
value of saturation function is calculated for all data points and subtracted from measured values giving corrected
values of fluorescence, which are used in next calculations.

Some approaches make even less assumptions regarding the form of the background noise. The taking-
difference linear regression method uses the premise that changes of fluorescence between subsequent cycles
could exclusively be caused by the amplification of the product (Rao et al., 2013). Thus, the corrected values
are calculated by simply subtracting the fluorescence value in the former cycle from fluorescence in the latter.
The real fluorescence value in the first cycle is unknown since the number of cycles used for the computation is
reduced by one.

The Real-Time PCR Miner algorithm is nearly assumption-free (Zhao and Fernald, 2005). The principle
is that background fluorescence is similar in the small groups of subsequent measurements. So the first step of the
algorithm is division of subsequent measurement points belonging to the exponential phase of amplification in at
least four-elemental groups. For each set of points a pair of the estimate of the efficiency and the significance of
model representing the relation between the fluorescence value and the cycle number is calculated. The estimates
with the highest significance are the most influential in the computation of the final efficiency.

Finding the beginning of the lag phase and end of plateau phase is important for the goodness-of-fit for both
exponential-phase-only and S-shaped models. There are two strategies. The first narrows the area of the search
to the neighborhood of their theoretical values determined by a fitted model for the amplification reaction. To
this group belongs SoFar (Wilhelm et al., 2003). The algorithm looks for the start and the end of the exponential
phase near the second derivatives of the function representing the relation between logarithm of the fluorescence
and the cycle number. The available correction guarantees that the start of amplification has a higher value than
background noise. A very similar procedure is implemented in Real-Time PCR Miner (Zhao and Fernald,
2005), where background noise is used as parameter in implemented models to calculate a theoretical start of
the amplification process. The end of amplification process is detected by calculating the third derivative of
an implemented S-shaped model. The second approach does not require theoretical values. A very intuitive
solution, designated take-off point, by Tichopad et al. (2003) describes the lag phase using a linear function.
Random deviations are taken into account as standardized residuals. The method starts with a fitting of a linear
function to the first three measurement points. If none of the residuals is statistically identified as an outlier,
the algorithm fits a new linear model to the first four measurement points and so on. The procedure stops when
two last points are designated as outliers. The first of aforementioned outliers defines the end of lag phase. It is
worth noting that this algorithm is versatile enough to detect the beginning of the plateau phase.

The algorithm of bg.max is based on the assumption that the signal difference of successive cycles in the
linear ground phase is approximately constant. The signal drastically changes during transition into the early
exponential phase. First data are smoothed by the Friedman’s ’super smoother’ as found in “supsmu”. Thereof
the approximate first and second derivative are calculated by a five-point stencil inder. The difference of cycles at
the maxima of the first and second approximate derivative and a correction factor are used to estimate the range
before the exponential phase. This simple function finds the background range without modeling the function.
The start of the background range is defined be a “fixed” value. Since many signals tend to overshoot in the
first cycles, a default value of 2 (for qPCR) is chosen. bg.max tries also to estimate the end of an amplification
reaction (Figure S16). See section bg.max “Details” of the chipPCR manual for further details. This function is
a rational basis for trimming of unwanted data.

33

par(las = 0, mfrow = c(2, 1), bty = "n", oma = c(0.5, 0.5, 0.5,

0.5))

res <- AmpSim(cyc = 1:40, Cq = 25)

plot(res, xlim = c(1, 40), ylim = c(-0.1, 1), xlab = "Cycles",

ylab = "refMFI", main = "Background Range Estimation\n in the Absence of Noise",

type = "b", pch = 20)

background <- bg.max(res[, 1], res[, 2])

mtext("A", cex = 2, side = 3, adj = 0, font = 2)

points(background[, 3], col = "red", type = "b", pch = 20)

points(background[, 4], col = "blue", type = "b", pch = 20)

abline(v = background@bg.start)

text(background@bg.start, 0.2, "Background start", pos = 4)

abline(v = background@bg.stop, col = "blue")

text(background@bg.stop, 0.25, "Background stop", pos = 4, col = "blue")

abline(v = background@amp.stop, col = "green")

text(background@amp.stop, 0.3, "Plateau transition", pos = 4,

col = "green")

legend(4, 1, c("Raw data", "First derivative", "Second derivative"),

pch = rep(20, 3), col = c(1, 2, 4), bty = "n")

res <- AmpSim(cyc = 1:40, Cq = 25, noise = TRUE)

plot(res, xlim = c(1, 40), ylim = c(-0.1, 1), xlab = "Cycles",

ylab = "refMFI", main = "Background Range Estimation\n in the Presence of Noise",

type = "b", pch = 20)

mtext("B", cex = 2, side = 3, adj = 0, font = 2)

background <- bg.max(res[, 1], res[, 2])

points(background[, 3], col = "red", type = "b", pch = 20)

points(background[, 4], col = "blue", type = "b", pch = 20)

abline(v = background@bg.start)

text(background@bg.start, 0.2, "Background start", pos = 4)

abline(v = background@bg.stop, col = "blue")

text(background@bg.stop, 0.25, "Background stop", pos = 4, col = "blue")

abline(v = background@amp.stop, col = "green")

text(background@amp.stop, 0.3, "Plateau transition", pos = 4,

col = "green")

legend(4, 1, c("Raw data", "First derivative", "Second derivative"),

pch = rep(20, 3), col = c(1, 2, 4), bty = "n")

par(mfrow = c(1, 1))

The bg.max algorithm was used to analyze amplification data from a capillary convective PCR (capillaryPCR
dataset, chipPCR package). The raw data (Figure S17 A) and pre-processed data (Figure S17 B) using the CPP
showed comparable curvatures. We observed no significant difference between the raw and pre-processed data.

Set parameter for the plot.

par(mfrow = c(2, 1), las = 0, bty = "n")

Use of bg.max for time-dependent measurements.

Amplification curves from the capillaryPCR dataset were

processed in a loop. The results of bg.max are added to the

plot.

colors <- rainbow(8)

plot(NA, NA, xlim = c(0, 75), ylim = c(-200, 1300), xlab = "Time (min)",

ylab = "Voltage (micro V)", main = "ccPCR - Raw data")

mtext("A", cex = 1.5, side = 3, adj = 0)

for (i in c(1, 3, 5, 7)) {
x <- capillaryPCR[1L:750, i]

34

● ●
●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
0

0.
4

0.
8

Background Range Estimation
 in the Absence of Noise

Cycles

re
fM

F
I

A

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ●● ●

Background start Background stop Plateau transition

●

●

●

Raw data
First derivative
Second derivative

● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

●

●

●
●

● ● ● ●
●

● ● ●
● ● ●

0 10 20 30 40

0.
0

0.
4

0.
8

Background Range Estimation
 in the Presence of Noise

Cycles

re
fM

F
I

B

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ●● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Background start Background stop Plateau transition

●

●

●

Raw data
First derivative
Second derivative

Figure S16: bg.max tries to estimate the range between the background and the plateau phase of an amplification
reaction. (A) in absence and (B) presence of noise. The data were simulated with the AmpSim function.

35

y <- capillaryPCR[1:750, i + 1]

res.bg <- summary(bg.max(x, y))

lines(x, y, type = "b", pch = 20, col = colors[i], cex = 0.5)

lines(c(res.bg[2], res.bg[2], res.bg[4], res.bg[4]), c(-150,

-50, -150, -50), col = colors[i], lwd = 1.5)

text(10, 1200 - i * 50, paste("bg.start: ", res.bg[1], ", bg.stop: ",

res.bg[2], ", amp.stop: ", res.bg[4]), col = colors[i],

cex = 0.6)

}

plot(NA, NA, xlim = c(0, 75), ylim = c(-200, 1300), xlab = "Time (min)",

ylab = "Voltage (micro V)", main = "ccPCR - Pre-processed")

mtext("B", cex = 1.5, side = 3, adj = 0)

for (i in c(1, 3, 5, 7)) {
x <- capillaryPCR[1L:750, i]

y <- CPP(capillaryPCR[1L:750, i], capillaryPCR[1:750, i +

1], method = "mova", trans = TRUE, bg.range = c(1, 105),

bg.outliers = TRUE)[["y.norm"]]

res.bg <- summary(bg.max(x, y))

lines(x, y, type = "b", pch = 20, col = colors[i], cex = 0.5)

lines(c(res.bg[2], res.bg[2], res.bg[4], res.bg[4]), c(-150,

-50, -150, -50), col = colors[i], lwd = 1.5)

text(10, 1200 - i * 50, paste("bg.start: ", res.bg[1], ", bg.stop: ",

res.bg[2], ", amp.stop: ", res.bg[4]), col = colors[i],

cex = 0.6)

}

36

0 20 40 60

0
50

0
10

00

ccPCR − Raw data

Time (min)

V
ol

ta
ge

 (
m

ic
ro

 V
)

A

●●
●●●

●●●●●●
●●

●●●●●●
●●●

●
●
●
●●

●●●●●
●●●●●

●●●

●●●
●●

●

●
●

●●●
●●

●●●
●

●

●●
●
●
●
●●●

●
●
●●●●

●

●
●●

●●●●

●
●
●
●●●●

●●●●
●●

●●●●

●
●●●

●

●●
●

●
●
●
●●

●
●
●
●
●
●●

●
●●

●
●●●

●●●
●●●

●●
●
●
●●●●●●●

●●●●●●
●
●●●●

●●●●
●●

●
●●●

●

●
●
●
●
●●●●

●
●

●
●●●●●●●●

●●●●●●
●●●●

●
●
●
●
●●●

●●
●
●
●●

●
●●●●

●●●
●●●●●●●●●

●
●●●

●●●
●●

●●●
●●●

●●●●●●●●●
●●

●●
●●●●●●●

●
●●

●
●●●●

●
●
●●●●●●●●

●●
●●●

●●●
●●●●●●●

●●
●●●●

●
●
●●●

●●
●●●

●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●

●●●
●●●●

●
●●●

●
●●

●
●
●●●●●

●
●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●
●●●●●●

●●●●●●●●
●●●●

●●
●●●●●●●

●●
●●●●●●●●

●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●

●●●●●
●●

●●

bg.start: 2 , bg.stop: 12 , amp.stop: 34

●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●
●●●●

●
●●

●●
●
●●

●●
●
●●●●

●●
●●

●
●●

●●●
●●

●
●
●
●
●●

●
●●●

●
●●

●
●●●

●●●●
●●

●●
●●

●
●●●

●●
●●●●●

●●
●●●

●●●●
●●

●●
●
●●●●●●

●
●●●●●●●●

●●●●●●●
●
●●

●●●●
●●

●●
●●●

●●●●●●
●●●●●

●●●●●
●●

●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●

●●●
●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

bg.start: 2 , bg.stop: 9 , amp.stop: 33

●●

bg.start: 2 , bg.stop: 5 , amp.stop: 750

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●●●●●●●

●●●●
●●

●●●●●●
●●

●●●●●
●●●●●●●

●
●
●
●
●●

●●
●
●●●

●●●
●●

●●
●
●●

●
●
●
●●●●

●●●
●●●●●●●●

●●
●
●
●●

●●
●
●
●
●●●●

●
●●

●
●●●

●●●●
●
●●●●

●●
●●●●●●●

●●●●
●●●●●●●●

●●●●●
●●●

●●
●●

●●
●
●
●●

●●
●●●

●
●
●
●●●●●

●
●●●

●
●●●●

●●
●●●●

●●●
●●●●●

●
●●●●●●●●●●●

●
●
●●

●●●●●●●
●●●●

●●●●
●●●●

●●●●●●●●●
●●

●●
●●●●●

●●●
●●●●

●●●●●●
●
●●●

●
●●

●●●●●●●●●●
●●

●●●
●●●●●●●

●●●
●●●●●●●●●●●●

●●
●●●●●●●●●

●●●●
●●●●

●
●●●

●●●●●
●●●●

●●
●●

●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●

bg.start: 2 , bg.stop: 22 , amp.stop: 57

0 20 40 60

0
50

0
10

00

ccPCR − Pre−processed

Time (min)

V
ol

ta
ge

 (
m

ic
ro

 V
)

B

●●
●●●●●●●●●●●●●●

●●●●●
●●●

●●●●●●●
●●

●●●
●●

●●●●●
●●

●●●●
●●

●
●
●●●

●
●

●●●●●●●●●●
●

●
●●●●●

●●
●●●

●●●●
●
●
●
●
●●●

●
●
●
●
●●●●●●●●

●●●
●●

●●
●●

●●●●
●
●
●●

●
●
●
●
●
●●●●●●

●●
●●●●●●●●●●●

●
●
●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●

●●●●●
●●●●●

●
●●●●●●●●●●●

●●●●●●●
●
●●●●●●

●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●
●
●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●●●
●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●
●●●●●●●●●●

●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

bg.start: 2 , bg.stop: 13 , amp.stop: 35

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●

●●
●●

●●
●●

●●
●
●●●●

●
●●

●●
●●●●●

●
●
●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●●

●●●
●●●

●●●●
●
●●

●●
●●

●●●
●
●
●●●●●

●●●
●
●●

●●
●●●●●●

●●●●●●●●●●
●●●●●●

●
●●

●●●●
●●

●●●
●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●bg.start: 2 , bg.stop: 9 , amp.stop: 33

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

bg.start: 2 , bg.stop: 93 , amp.stop: 750

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●

●●
●●●●●●●●●●●

●●●
●●

●●●●●●●
●
●●●●●●●

●●●●●●●●
●●

●●●
●●●●●

●●
●●●●●●

●●●●
●●

●●●
●●●●

●●●●●●●●●
●●●●

●●●●
●
●●●●●

●●
●
●
●●●

●●●
●●●●●

●
●●

●●●●●●●
●●●

●●●●●●●●
●●●●

●●
●●●

●●
●●

●●
●●●●

●●●●●●
●
●●●●●

●●●●●●●●
●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●
●●●●

●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●bg.start: 2 , bg.stop: 22 , amp.stop: 57

Figure S17: Application of the bg.max function. Amplification curve data from a capillary convective PCR were
used (A) as raw data and (B) pre-processed (smoothed (moving average, window size 3), base-lined and trend
corrected (robust MM-estimator)) with the CPP function. The output of the CPP function was used by bg.max
to detected the start and the end of the amplification reaction. The start and end were reliably estimated (range
between “bg.stop” and “amp.stop”). There was no significant difference between raw and pre-processed data.

37

11 Normalization of amplification curve data

As illustrated in Figure S18 A, it is a common characteristic of data used for plotting amplification curves, that
the fluorescence values in the baseline and plateau region vary between samples (e.g., due to high background,
variances in dye quantities). Minimum and maximum values differ within an experiment. For visualization it
is recommended to scale the data. This helps to grasp the data faster and alleviates the comparison of data
from different measurements and/or scaling. normalizer is a function used to normalize any data by different
methods (see details). To scale the fluorescence between 0 and 1 a Min-Max normalization (Equation S2) is
recommended (Rödiger et al., 2013b). We propose a quantile based normalization as alternative (Equation S4)
since quantiles are less affected by outliers. The method can be invoked by the parameter norm = ”luqn”.
Although this does not scale all values between zero and one, we found it to be useful for noisy data. The
parameter qnL is symmetrically used to set the level for quantiles. By default, the 3 % and 97 % quantiles are
used for the normalization. In addition, a maximum normalization (Equation S3, Figure S18 D) and a standard
score normalization (Equation S5, Figure S18 F) is implemented.

RFUminmax =
RFU −min(RFU)

max(RFU)−min(RFU)
(S2)

RFUmax =
RFU

max(RFU)
(S3)

RFUluqn =
RFU −Qp(RFU)

Q1−p(RFU)−Qp(RFU)
(S4)

RFUzscore =
RFU − x̄RFU

sRFU
(S5)

The parameter qnL is a user defined quantile, which is used for the quantile normalization.

• A quantile normalization herein refers to an approach, which is less prone to outliers than a normalization
to the minimum and the maximum of an amplification plot.

• minm does a min-max normalization between 0 and 1 (see (Rödiger et al., 2013b) for explanation).

• max does a normalization to the maximum value (MFI/max(MFI)).

• lugn does a quantile normalization based on a symmetric proportion as defined by the qnl parameter (e.g.,
qnl = 0.03 equals 3 and 97 percent quantiles).

• zscore performs a z-score normalization with a mean of 0 and a standard deviation of 1.

par(mfrow = c(2, 3), las = 0, bty = "n", oma = c(0.5, 0.5, 0.5,

0.5))

tmp <- VIMCFX96_60

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 6000), xlab = "Cycle",

ylab = "RFU", main = "Raw data")

mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], x))

abline(lm(rowMeans(tmp[2:10, 2L:ncol(tmp)]) ~ tmp[2:10, 1]),

col = 2)

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 3300), xlab = "Cycle",

ylab = "RFU", main = "Baselined data")

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmp[,

1], x, method.norm = "none")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",

ylab = "RFU", main = "MinMax-Normalization")

mtext("C", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmp[,

1], x, method.norm = "minm")$y))

38

0 10 20 30 40

0
10

00
20

00
30

00
40

00
50

00
60

00
Raw data

Cycle

R
F

U

A

0 10 20 30 40

0
50

0
10

00
15

00
20

00
25

00
30

00

Baselined data

Cycle
R

F
U

B

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MinMax−Normalization

Cycle

R
F

U

C

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max−Normalization

Cycle

R
F

U

D

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

luqn−Normalization

Cycle

R
F

U

E

0 10 20 30 40

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

zscore−Normalization

Cycle

R
F

U

F

Figure S18: Comparison of the normalization methods with the CPP function. The VIMCFX96 60 dataset
(96-well plate cycler, Bio-Rad CFX96, EvaGreen detection) was used. (A) Plot of raw data for all amplification
curves. The signals are superimposed to circa 2200 RFU and the inter-sample baseline and plateau shift is high.
Note the positive trend (–, fitted with an ordinary least squares method) in the background range of cycles 1 to
15. All subsequent plots were processed with the CPP function. By default, the curves are base-lined, smoothed
(Savitzky-Golay smoother) and the slope corrected by a linear regression (trans = TRUE). (B) base-lined raw
data, (C) Min-Max normalization, (D) Max normalization, (E) lugn-normalization with a cut off 3% and (F)
zscore-normalization.

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",

ylab = "RFU", main = "Max-Normalization")

mtext("D", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmp[,

1], x, , method.norm = "max")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",

ylab = "RFU", main = "luqn-Normalization")

mtext("E", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmp[,

1], x, method.norm = "luqn", qnL = 0.03)$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(-1.5, 1.5), xlab = "Cycle",

ylab = "RFU", main = "zscore-Normalization")

mtext("F", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmp[,

1], x, method.norm = "zscore")$y))

39

11.1 Computing linear model coefficients - Background subtraction based on linear

models

The slope of the background range is often unequal to zero and in most cases and is accompanied by a positive
or negative trend. It is however possible to correct the slope by a linear trend extrapolation. The functions
lm.coefs and CPP are wrappers used by functions to perform normal (linear least squares) and robust linear
regression. lm.coefs calculates the estimated background of an amplification curve. This includes a ordinary
least squares method (lm, stats) and three other robust methods. Robust regression methods are less vulnerable
to outliers. This feature is especially useful, when the background range contains noise. These robust methods
are (I) a nonparametric rank-based estimator (Kloke and McKean, 2012), (II) quantile regression (Koenker,
2008) and (III) a MM-type estimators for linear regression (Todorov and Filzmoser, 2009). By default, the
MM-type estimator is used. Under the assumption that the background is constant, CPP or lm.coefs uses a
defined range of the amplification curve (e.g., background range) to extrapolate a linear trend over the entire
data. The coefficients of the analysis can be used for a trend-based correction of the entire dataset (Figure S19).
If the robust linear regression is impossible, lm.coefs performs a linear regression using the least squares method.
However, this operation effects the AE. Caution should be exercised when using trans with time series (see lm
from the stats package for details).

par(bty = "n")

plot(VIMCFX96_69[, 1], VIMCFX96_69[, 2], type = "l", xlab = "Cycle",

ylab = "Fluorescence")

rect(1, 0, 10, 5000)

method <- c("lmrob", "rq", "least", "rfit")

for (i in 1:4) {
tmp <- lm.coefs(VIMCFX96_69[1:10, 1], VIMCFX96_69[1:10, 2],

method.reg = method[i])

text(9, 3200 - i * 100, paste(method[i], ":", "m: ", round(tmp[1,

1], 4), "n: ", round(tmp[2, 1], 3)))

abline(a = tmp[1, 1], b = tmp[2, 1], col = i + 1, lwd = 1.5)

}
legend("right", c("Data", "lmrob", "rq", "least", "rfit"), lty = 1,

col = 1:5, cex = 0.95)

40

0 10 20 30 40

22
00

24
00

26
00

28
00

30
00

32
00

34
00

Cycle

F
lu

or
es

ce
nc

e

lmrob : m: 2125.2826 n: 7.09

rq : m: 2127.3667 n: 6.703

least : m: 2125.2087 n: 7.098

rfit : m: 2124.8206 n: 7.166
Data
lmrob
rq
least
rfit

Figure S19: lm.coefs a function to compute coefficients for linear models. The function is a wrapper for functions
to perform normal (least squares) and robust linear regression. If the computation of the robust linear regression
fails, then lm.coefs performs a linear regression using the least squares method. lmrob, MM-type estimators for
linear regression; rq, quantile regression fit; least, least squares linear regression; rfit, Rank-based estimates of
regression coefficients. m, slope; n, asymmetry.

41

12 The inder function - an interpolating five-point stencil

Many methods for curve analysis require the calculation of derivatives. It is possible to solve this by fitting a
curve to a function and performing symbolic derivation. Unfortunately, this approach causes information loss
through the fitting process and unnecessarily adds additional assumptions regarding the relation between cycle
number and fluorescence level. Hence, we integrated the inder function. inder (“in” and “der” = interpolate
derivatives) finds numeric derivatives by a five-point stencil, a commonly used finite difference method. These
methods approximate derivative in a given point by adding up products of nearby values of function and their
weights (Dahlquist and Björck, 2008). This function can estimate the approximate quantification cycles (Cq).
Differentiation is a method for background suppression and reduction of the inter sample background amplitude
variations (Figure S22 A and B). Smoothing may enhance the calculation of derivatives and optimize the signal-
to-noise ratio. Therefore, we implemented spline interpolation and Friedman’s SuperSmoother. However, the use
of this smoother is limited in use to other functions such as bg.max. The parameter Nip (default Nip = 4) is
used to define how often an interpolation takes place at n equidistant points within the first and the last cycle.
A high Nip may improve the precision. However, a Nip less than 2 and higher than 20 are not meaningful for
conventional qPCR with 30 to 50 cycles. In the context of qIA, a higher Nip might be appropriate.

12.1 Quantitative description of amplification reactions

The Cq is a relative value, which depends on the template copy number, instrument, reagents, AE and probe
technology. Low Cqs correlate with high quantities of template copy numbers. Real-time technologies enable
the quantification of nucleic acids by calculation of specific curve parameters like the Cq and the AE based on
the kinetics of the amplification curve. The Cq represents the number of cycles (time for qIA) needed to reach a
defined fluorescence signal level in the exponential phase of the amplification curve. The Cq can be determined
from a fixed threshold value or by various analytical algorithms as described elsewhere (Ruijter et al., 2009, 2013;
Tellinghuisen and Spiess, 2014). The output of inder includes the first derivative maximum (FDM) and second
derivative maximum (SDM), which are commonly used in qPCR experiments but might be useful for isothermal
amplification processes, too. Figure S20 shows a typical result of the inder function. Following we show three
examples that explain properties of inder and illustrate applications of the function in combination with other
functions.

The inder function calculates numeric derivatives on smoothed data, which results in data points not observ-
able in reality. The rounder function averages such result to the real values of cycle number

Simulate an amplification curve with 40 cycles using the

AmpSim function.

isPCR <- AmpSim(cyc = 1:40)

Use inder to calculate the derivatives and assign the

results to the object res

res <- inder(isPCR)

Process res by rounder and assign the results to the object

rd

rd <- rounder(res)

Print details of res and rd. Due to the internal use of

interpolating splines in inder are the number of elements

in the object res the n-th time of the raw data. In this

case 200 virtual instead of 40 real cycles.

head(res)

x y d1y d2y

[1,] 1.000000 0.05 -4.350617e-13 8.697680e-13

[2,] 1.245283 0.05 -2.217106e-13 8.704119e-13

[3,] 1.490566 0.05 -8.206265e-15 8.702197e-13

[4,] 1.735849 0.05 2.086810e-13 8.842231e-13

[5,] 1.981132 0.05 4.222938e-13 7.730801e-13

[6,] 2.226415 0.05 4.929158e-13 -2.900925e-13

summary(res)

Smoothing method: spline

42

First derivative maximum: 19.89

Second derivative maximum: 18.91

Second derivative minimum: 21.11

Second derivative center: 19.98

head(rd)

cyc y d1y d2y

[1,] 1 0.05 -2.216595e-13 8.701332e-13

[2,] 2 0.05 3.471567e-13 -5.632357e-14

[3,] 3 0.05 -1.083221e-12 -4.552932e-13

[4,] 4 0.05 3.944521e-12 2.505165e-12

[5,] 5 0.05 -1.449063e-11 -1.173032e-11

[6,] 6 0.05 5.390452e-11 5.562310e-11

summary(rd)

Figure S20 illustrates the most important parameters of the inder function. We used the AmpSim function to
simulate an ideal “noise-free” amplification curve with the default set to calculate the second derivative maximum
(SDM) with inder. If logy is TRUE then a semi-decadic log scale graph (corresponds to the linear phase) to
illustrate the exponential dynamic of the qPCR amplification is used. The parameter logy is FALSE by default.
To the best of our knowledge, inder is the first tool in R, which allows a user to numerically derive his data
without fitting them to any function or a combination of functions. The universality of this stencil approach can
find an application even in problems not related to the analysis of amplification curves.

Use AmpSim to generate an amplification curve with 40

cycles and an approximate Cq of 20 and assign it to the

object isPCR. isPCR is an object of the class

'data.frame'.

isPCR <- AmpSim(cyc = 1:40, Cq = 20)

Invoke the inder function for the object isPCR to

interpolate the derivatives of the simulated data as object

res. The Nip parameter was set to 5. This leads to smoother

curves. res is an object of the class 'der'.

res <- inder(isPCR, Nip = 5)

Plot the object res and add descriptions to the elements.

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot(isPCR, xlab = "Cycle", ylab = "RFU", ylim = c(-0.15, 1),

main = "", type = "b", pch = 20, lwd = 2)

colors <- rainbow(4)

Add graphical elements for the derivatives and the

calculated Cq values FDM, SDM, SDm and SDC.

lines(res[, "x"], res[, "d1y"], col = "blue", lwd = 2)

lines(res[, "x"], res[, "d2y"], col = "red", lwd = 2)

Fetch the Cq values from res with the summary function

summ <- summary(res, print = FALSE)

abline(v = summ, col = colors, lwd = 2)

text(15, 0.3, paste("FDM ~ ", round(summ["FDM"], 2)), cex = 1.1,

col = colors[1])

text(15, 0.2, paste("SDM ~ ", round(summ["SDM"], 2)), cex = 1.1,

col = colors[2])

text(15, -0.1, paste("SDm ~ ", round(summ["SDm"], 2)), cex = 1.1,

col = colors[3])

text(15, 0.7, paste("SDC ~ ", round(summ["SDC"], 2)), cex = 1.1,

col = colors[4])

43

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cycle

R
F

U

FDM ~ 19.81

SDM ~ 19.03

SDm ~ 20.99

SDC ~ 19.99

Raw data
First derivative
Second derivative

Figure S20: Quantification cycle (Cq) by the second derivative maximum method. Raw data (•) were generated
by the AmpSim function. The inflection point is the point where the slope is maximum and the curvature is
zero. The first derivative of the amplification curve has a first derivative maximum (FDM) at the inflection
point. The second derivative maximum method (SDM) needs to differentiate a curve to the second order prior to
quantification. The second derivative exhibits a zero-crossing at the FDM . The function y = f(x) is numerically
derived by the five-point stencil. This method is assumption free regarding the function f . inder calculates the
approximate SDM . The SDM is calculated from a derived cubic spline. Similarly, the first approximate
derivative maximum (FDM), second derivative minimum (SDm), and approximate second derivative center
(SDC, geometric mean of SDM and SDm) are available. FDM , SDm and SDC values can be used to further
characterize the amplification process.

legend(1.1, 0.9, c("Raw data", "First derivative", "Second derivative"),

col = c(1, 4, 2), lty = c(2, 1, 1), bty = "n")

Summary of the object res.

summ

FDM SDM SDm SDC

19.81407 19.03015 20.98995 19.98604

inder is a helper function, which can be part of other routines. Recently, we added this approach to the
diffQ function of the MBmca for improved predictions. The diffQ function is part of a routine to calculate the
melting points of nucleic acids (Rödiger et al., 2013b). The FDM and SDM are peak values to determine the
Cq. We used the inder function in diffQ to compare the Cq values between a quantification experiment where
the samples were either detected with a gene specific hydrolysis probe or the intercalating dye EvaGreen. For
the analysis we focused on the SDM . We found that the samples detected with EvaGreen had a slightly lower
Cq (Figure S21 A) than samples detected with the hydrolysis probe (Figure S21 B). The mean variation of the
Cq was less in samples where EvaGreen was used for monitoring.

44

Plot all data from C127EGHP and calculate the SDM (Second

Derivative Maximum) values with the diffQ2() function

(Note: the inder parameter is set as TRUE) first plot the

samples detected with EvaGreen and next the samples

detected with the Hydrolysis probe

require(MBmca)

pointer <- function(x, pos = 1, w = 5, stat = TRUE) {
xx <- pos + rep(seq(-0.1, 0.1, length.out = w), ceiling(length(x)/w))

yy <- sort(x)

points(xx[1:length(yy)], yy, pch = 19)

if (stat == TRUE)

x.median <- median(x, na.rm = T)

x.mad <- mad(x, na.rm = T) * 2

param <- c(length = 0, code = 3, pch = 15, cex = 1.2)

arrows(xx[1] * 0.98, x.median, tail(xx, 1) * 1.02, x.median,

param, lwd = 3, col = 2)

arrows(xx[1] * 1.01, x.median + x.mad, tail(xx, 1) * 0.99,

x.median + x.mad, param, lwd = 2, lty = 2, col = 4)

arrows(xx[1] * 1.01, x.median - x.mad, tail(xx, 1) * 0.99,

x.median - x.mad, param, lwd = 2, lty = 2, col = 4)

}

amp.liner <- function(range, input, colors = "black") {
sapply(range, function(i) {

lines(input[, 2], input[, i], col = colors, pch = 19)

tmpP <- mcaSmoother(input[, 2], input[, i])

SDM <- diffQ2(tmpP, inder = TRUE)[["xTm1.2.D2"]][1]

abline(v = SDM)

SDM

})
}

layout(matrix(c(1, 3, 2, 3), 2, 2, byrow = TRUE), respect = TRUE)

par(las = 0, bty = "n")

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 10), xlab = "Cycle",

ylab = "Fluorescence", main = "EvaGreen")

mtext("A", cex = 1.1, side = 3, adj = 0, font = 2)

EG <- amp.liner(range = 3L:34, input = C127EGHP)

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 10), xlab = "Cycle",

ylab = "Fluorescence", main = "Hydrolysis probe")

mtext("B", cex = 1.1, side = 3, adj = 0, font = 2)

HP <- amp.liner(range = 35L:66, input = C127EGHP)

plot(NA, NA, xlim = c(0.8, 2.2), ylim = c(13, 14), xaxt = "n",

xlab = "", ylab = "Cq (SDM, diffQ2)")

text(c(1.05, 2), c(13.05, 13.05), c("EG", "HP"), cex = 1.2)

mtext("C", cex = 1.1, side = 3, adj = 0, font = 2)

pointer(EG, pos = 1, w = 8)

pointer(HP, pos = 2, w = 8)

45

0 10 20 30 40

0
2

4
6

8
10

EvaGreen

Cycle

F
lu

or
es

ce
nc

e

A

0 10 20 30 40

0
2

4
6

8
10

Hydrolysis probe

Cycle

F
lu

or
es

ce
nc

e

B

13
.0

13
.2

13
.4

13
.6

13
.8

14
.0

C
q

(S
D

M
, d

iff
Q

2)

EG HP

C

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●

●●
●●●●

●
●●

●
●
●
●
●●●●

●●●
●●●●

●

●

Figure S21: Plot of all data from C127EGHP and calculate the SDM (Second Derivative Maximum) values with
the diffQ2 function. (A) Plot the samples detected with EvaGreen and (B) shows the same samples detected
with the Hydrolysis probe for MLC-2v. (C) Stripchart of the Cq values (•) with the median (–) and the median
absolute deviation (– –). This result indicates, that the variance derived from detection with hydrolysis probes
is higher than for the samples detected with EvaGreen. Note: the inder parameter is set as TRUE.

46

13 Quantification cycle calculation by the inder function

13.1 The inder function in combination with a 5-parameter curve fit function

In the previous example we used smoothing and the inder method to calculate the SDM . Smoothing alters
the peak signal (e.g., peak height reduction and peak width increase are commonly encountered problems). An
alternative technique to determine the FDM or SDM is by fitting the raw data. In the next example we used
the drm function from the drc package (Ritz and Streibig, 2005) to fit a five-parameter log-logistic function
(S-shaped). The inder function was used to calculate the SDM of the predicted models (Figure S22).

fit.amp <- function(cyc, fluo, plot = FALSE) {

ampl <- quantile(fluo, 0.999)

bl <- quantile(fluo, 0.001)

Cq <- round(mean(cyc))

b.eff <- 1

fit <- nls(fluo ~ bl + ampl/(1 + exp(-(cyc - Cq)/b.eff)),

start = list(Cq = Cq, b.eff = b.eff, ampl = ampl, bl = bl))

res.pred <- data.frame(cyc, predict(fit))

res <- inder(res.pred[, 1], res.pred[, 2])

if (plot) {
lines(res[, 1], res[, 4])

}
SDM

summary(res)[2]

}

tmp <- C126EG595

out <- apply(tmp[, -1], 2, function(x) fit.amp(tmp[, 1], x))

layout(matrix(c(1, 2, 1, 3), 2, 2, byrow = TRUE))

plot(NA, NA, xlim = c(1, 40), ylim = c(min(tmp[, 2L:97]), max(tmp[,

2L:97])), xlab = "Cycle", ylab = "Raw fluorescence")

mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

for (i in 2L:97) {
lines(tmp[, 1], tmp[, i], col = ifelse(out[i - 1] < 15.5,

"red", "black"), lwd = 2)

}
abline(v = out)

plot(NA, NA, xlab = "Cycle", ylab = "RFU''(Cycle)", main = "",

xlim = c(0, 40), ylim = c(-850, 850))

abline(v = 15.5, lty = 2)

invisible(apply(tmp[, -1], 2, function(x) {
fit.amp(tmp[, 1], x, plot = TRUE)

}))
mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

hist(out, xlab = "Cq (SDM)", main = "", breaks = seq(14.8, 15.8,

0.05), col = rainbow(96))

abline(v = 15.5, lty = 2)

mtext("C", cex = 1.2, side = 3, adj = 0, font = 2)

47

