
Package ‘fiery’
October 22, 2018

Type Package

Title A Lightweight and Flexible Web Framework

Version 1.1.1

Date 2018-10-22

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description A very flexible framework for building server side logic in R. The
framework is unopinionated when it comes to how HTTP requests and WebSocket
messages are handled and supports all levels of app complexity; from serving
static content to full-blown dynamic web-apps. Fiery does not hold your hand
as much as e.g. the shiny package does, but instead sets you free to create
your web app the way you want.

License MIT + file LICENSE

Encoding UTF-8

Imports R6, assertthat, httpuv, uuid, utils, stringi, future, later,
stats, reqres, glue, crayon

Collate 'loggers.R' 'aaa.R' 'HandlerStack.R' 'Fire.R' 'FutureStack.R'
'delay_doc.R' 'event_doc.R' 'fake_request.R' 'fiery-package.R'
'plugin_doc.R'

RoxygenNote 6.1.0

Suggests testthat, covr

URL https://github.com/thomasp85/fiery

BugReports https://github.com/thomasp85/fiery/issues

NeedsCompilation no

Author Thomas Lin Pedersen [aut, cre]

Repository CRAN

Date/Publication 2018-10-22 10:00:04 UTC

1

https://github.com/thomasp85/fiery
https://github.com/thomasp85/fiery/issues

2 fiery-package

R topics documented:
fiery-package . 2
delay_doc . 3
event_doc . 4
Fire . 7
loggers . 10
plugin_doc . 13
random_port . 14

Index 16

fiery-package fiery: A Lightweight and Flexible Web Framework

Description

A very flexible framework for building server side logic in R. The framework is unopinionated when
it comes to how HTTP requests and WebSocket messages are handled and supports all levels of app
complexity; from serving static content to full-blown dynamic web-apps. Fiery does not hold your
hand as much as e.g. the shiny package does, but instead sets you free to create your web app the
way you want.

Details

fiery is a lightweight and flexible framework for web servers build on top of the httpuv package.
The framework is largely event-based, letting the developer attach handlers to life-cycle events as
well as defining and triggering their own events. This approach to development is common in
JavaScript, but might feel foreign to R developers. Thankfully it is a rather simple concept that
should be easy to gradually begin to use to greater and greater effect.

Read more:

• Creation of the server object, along with all its methods and fields, is described in the docu-
mentation of the Fire class.

• An overview of the event model, along with descriptions of the predefined life-cycle events
and custom events can be found in the events documentation.

• A description of the fiery plugin interface and how to develop your own plugins is laid out
in the plugins documentation

Author(s)

Maintainer: Thomas Lin Pedersen <thomasp85@gmail.com>

See Also

Useful links:

• https://github.com/thomasp85/fiery

• Report bugs at https://github.com/thomasp85/fiery/issues

https://github.com/thomasp85/fiery
https://github.com/thomasp85/fiery/issues

delay_doc 3

delay_doc Delaying code execution in Fiery

Description

R, and thus fiery, is single threaded, meaning that every request must be handled one at a time.
Because of this it is of utmost importance to keep the computation time for each request handling
as low as possible so that the server does not become unresponsive. Still, sometimes you may need
to perform long running computations as part of the server functionality. fiery comes with three
different facilities for this, each with its own use case. All of them are build on top of future.

General format

All three methods have the same general API. They can recieve an expression to evaluate, as well
as a then function to call once the evaluation eventually completes. The then function will recieve
the result of the provided expression as well as the server itself. In general, any code that works
on the server should be handled by the then function as the expression will not necessarily have
access to the current environment. Thus, the expression should be as minimal as possible while still
containing the heavy part of the calculations, while the then function should be used to act upon
the result of the expression.

The general format is thus (using delay() as an example):

app$delay({
Heavy calculation

}, then = function(res, server) {
Do something with 'res' (the result of the expression) and 'server' the
server object itself

})

Pushing execution to the end of a cycle

If it is important to achieve a fast response time, but server congestion is of lesser concern (the
server might be used for a local app with only one user at a time), the delay() method can be used
to push the evaluation of long running computation to the end of the current cycle. It will of course
not be possible to return the result of the computation as part of the response, but e.g. a 202 response
can be returned instead indicating that the request is being processed. In that way the client can act
accordingly without appearing frozen. An alternative if a lengthy POST request is recieved is to
return 303 with a reference to the URL where the result can be recieved.

Executing in another process

If long running computations are needed and congestion is an issue it does not help to simply push
back execution to the end of the cycle as this will block requests while the code is evaluating.
Instead it is possible to use the async() method to evaluate the expression in another thread. This
method uses future::multiprocess() to evaluate the expression and may thus fork the current R
process if supported (Unix systems) or start another R session (Windows). At the end of each cycle
all async evaluations are checked for completion, and if completed the then function will be called
with the result. If the async evaluation is not completed it will continue to churn.

4 event_doc

Executing after a time interval

If code is meant to be evaluated after a certain amount of time has passed, use the time() method.
In addition to expr and then, time() takes two additional arguments: after (the time in seconds to
wait before evaluation) and loop (whether to repeat the timed evaluation after completion). Using
loop = TRUE it is e.g. possible to continually check for state changes on the server and e.g. run
some specific code if new files appear in a directory. In the end of each cycle all timed expressions
will be checked for whether they should be evaluated and run if their specific time interval has
passed.

Error handling

As both the expression and then function might throw errors they are evaluated in a safe context and
any errors that might occur will be send to the server log without affecting other waiting evaluations.

event_doc Event Overview

Description

fiery is using an event-based model to allow you to program the logic. During the life cycle of an
app a range of different events will be triggered and it is possible to add event handlers to these
using the on() method. An event handler is simply a function that will get called every time an
event is fired. Apart from the predefined life cycle events it is also possible to trigger custom events
using the trigger() method. Manual triggering of life cycle events is not allowed.

Life cycle Events

Following is a list of all life cycle events. These cannot be triggered manually, but is fired as part of
the normal lifetime of a fiery server:

start Will trigger once when the app is started but before it is running. The handlers will receive
the app itself as the server argument as well as any argument passed on from the ignite()
method. Any return value is discarded.

resume Will trigger once after the start event if the app has been started using the reignite()
method. The handlers will receive the app itself as the server argument as well as any argu-
ment passed on from the reignite() method. Any return value is discarded.

end Will trigger once after the app is stopped. The handlers will receive the app itself as the server
argument. Any return value is discarded.

cycle-start Will trigger in the beginning of each loop, before the request queue is flushed. The
handlers will receive the app itself as the server argument. Any return value is discarded.

cycle-end Will trigger in the end of each loop, after the request queue is flushed and all delayed,
timed, and asynchronous calls have been executed. The handlers will receive the app itself as
the server argument. Any return value is discarded.

event_doc 5

header Will trigger every time the header of a request is received. The return value of the last
called handler is used to determine if further processing of the request will be done. If the
return value is TRUE the request will continue on to normal processing. If the return value is
FALSE the response will be send back and the connection will be closed without retrieving the
payload. The handlers will receive the app itself as the server argument, the client id as the
id argument and the request object as the request argument

before-request Will trigger prior to handling of a request (that is, every time a request is received
unless it is short-circuited by the header handlers). The return values of the handlers will be
passed on to the request handlers and can thus be used to inject data into the request handlers
(e.g. session specific data). The handlers will receive the app itself as the server argument,
the client id as the id argument and the request object as the request argument

request Will trigger after the before-request event. This is where the main request handling is
done. The return value of the last handler is send back to the client as response. If no handler
is registered a 404 error is returned automatically. If the return value is not a valid response,
a 500 server error is returned instead. The handlers will receive the app itself as the server
argument, the client id as the id argument, the request object as the request argument, and
the list of values created by the before-event handlers as the arg_list argument.

after-request Will trigger after the request event. This can be used to inspect the response (but not
modify it) before it is send to the client. The handlers will receive the app itself as the server
argument, the client id as the id argument, the request object as the request argument, and
the response as the response argument. Any return value is discarded.

before-message This event is triggered when a websocket message is received. As with the before-request
event the return values of the handlers are passed on to the message handlers. Specifically if
a 'binary' and 'message' value is returned they will override the original values in the
message and after-message handler arguments. This can e.g. be used to decode the mes-
sage once before passing it through the message handlers. The before-message handlers
will receive the app itself as the server argument, the client id as the id argument, a flag
indicating whether the message is binary as the binary argument, the message itself as the
message argument, and the request object used to establish the connection with the client as
the request argument.

message This event is triggered after the before-message event and is used for the primary web-
socket message handling. As with the request event, the handlers for the message event
receives the return values from the before-message handlers which can be used to e.g. inject
session specific data. The message handlers will receive the app itself as the server argument,
the client id as the id argument, a flag indicating whether the message is binary as the binary
argument, the message itself as the message argument, the request object used to establish the
connection with the client as the request argument, and the values returned by the before-
message handlers as the arg_list argument. Contrary to the request event the return values
of the handlers are ignored as websocket communication is bidirectional

after-message This event is triggered after the message event. It is provided more as an equivalent
to the after-request event than out of necessity as there is no final response to inspect and
handler can thus just as well be attached to the message event. For clear division of server
logic, message specific handlers should be attached to the message event, whereas general
handlers should, if possible, be attached to the after-message event. The after-message
handlers will receive the app itself as the server argument, the client id as the id argument,
a flag indicating whether the message is binary as the binary argument, the message itself as

6 event_doc

the message argument, and the request object used to establish the connection with the client
as the request argument.

send This event is triggered after a websocket message is send to a client. The handlers will receive
the app itself as the server argument, the client id as the id argument and the send message
as the message argument. Any return value is discarded.

websocket-closed This event will be triggered every time a websocket connection is closed. The
handlers will receive the app itself as the server argument, the client id as the id argument
and request used to establish the closed connection as the request argument. Any return
value is discarded.

Custom Events

Apart from the predefined events, it is also possible to trigger and listen to custom events. The
syntax is as follows:

Add a handler to the 'new-event' event
id <- app$on('new-event', function() {

message('Event fired')
})

Trigger the event
app$trigger('new-event')

Remove the handler
app$off(id)

Additional parameters passed on to the trigger() method will be passed on to the handler. There
is no limit to the number of handlers that can be attached to custom events. When an event is
triggered they will simply be called in the order they have been added. Triggering a non-existing
event is not an error, so plugins are free to fire off events without worrying about whether handlers
have been added.

Triggering Events Externally

If a fiery server is running in blocking mode it is not possible to communicate with it using
the trigger() method. Instead it is possible to assign a directory to look in for event trigger
instructions. The trigger directory is set using the trigger_dir field, e.g.:

app$trigger_dir <- '/some/path/to/dir/'

Events are triggered by placing an rds file named after the event in the trigger directory. The file
must contain a list, and the elements of the list will be passed on as arguments to the event handlers.
After the event has been triggered the file will be deleted. The following command will trigger the
external-event on a server looking in '/some/path/to/dir/':

saveRDS(list(arg1 = 'test'), '/some/path/to/dir/external-event.rds')

Fire 7

See Also

Fire describes how to create a new server

plugins describes how to use plugins to modify the server

Fire Generate a New App Object

Description

The Fire generator creates a new Fire-object, which is the class containing all the app logic. The
class is based on the R6 OO-system and is thus reference-based with methods and data attached to
each object, in contrast to the more well known S3 and S4 systems. A fiery server is event driven,
which means that it is build up and manipulated by adding event handlers and triggering events.
To learn more about the fiery event model, read the event documentation. fiery servers can be
modified directly or by attaching plugins. As with events, plugins has its own documentation.

Initialization

A new ’Fire’-object is initialized using the new() method on the generator:

Usage

app <- Fire$new(host = ’127.0.0.1’, port = 8080L)

Arguments

host A string overriding the default host (see the Fields section below)
port An integer overriding the default port (see the Fields section below)

Copying

As Fire objects are using reference semantics new copies of an app cannot be made simply be
assigning it to a new variable. If a true copy of a Fire object is desired, use the clone() method.

Fields

host A string giving a valid IPv4 address owned by the server, or '0.0.0.0' to listen on all
addresses. The default is '127.0.0.1'

port An integer giving the port number the server should listen on (defaults to 8080L)

refresh_rate The interval in seconds between run cycles when running a blocking server (de-
faults to 0.001)

refresh_rate_nb The interval in seconds between run cycles when running a non-bocking server
(defaults to 1)

trigger_dir A valid folder where trigger files can be put when running a blocking server (defaults
to NULL)

8 Fire

plugins A named list of the already attached plugins. Static - can only be modified using the
attach() method.

root The location of the app. Setting this will remove the root value from requests (or decline them
with 400 if the request does not match the root). E.g. the path of a request will be changed
from /demo/test to /test if root == '/demo'

access_log_format A glue string defining how requests will be logged. For standard formats see
common_log_format and combined_log_format. Defaults to the Common Log Format

Methods

ignite(block = TRUE, showcase = FALSE, ...) Begins the server, either blocking the con-
sole if block = TRUE or not. If showcase = TRUE a browser window is opened directing at
the server address. ... will be redirected to the start handler(s)

start(block = TRUE, showcase = FALSE, ...) A less dramatic synonym of for ignite()

reignite(block = TRUE, showcase = FALSE, ...) As ignite but additionally triggers the
resume event after the start event

resume(block = TRUE, showcase = FALSE, ...) Another less dramatic synonym, this time
for reignite()

extinguish() Stops a running server

stop() Boring synonym for extinguish()

is_running() Check if the server is currently running

on(event, handler, pos = NULL) Add a handler function to to an event at the given position
(pos) in the handler stack. Returns a string uniquely identifying the handler. See the event
documentation for more information.

off(handlerId) Remove the handler tied to the given id

trigger(event, ...) Triggers an event passing the additional arguments to the potential han-
dlers

send(message, id) Sends a websocket message to the client with the given id, or to all con-
nected clients if id is missing

log(event, message, request, ...) Send a message to the logger. The event defines the
type of message you are passing on, while request is the related Request object if applicable.

close_ws_con(id) Closes the websocket connection started from the client with the given id,
firing the websocket-closed event

attach(plugin, ..., force = FALSE) Attaches a plugin to the server. See the plugin docu-
mentation for more information. Plugins can only get attached once unless force = TRUE

has_plugin(name) Check whether a plugin with the given name has been attached

header(name, value) Add a global header to the server that will be set on all responses. Remove
by setting value = NULL

set_data(name, value) Adds data to the servers internal data store

get_data(name) Extracts data from the internal data store

remove_data(name) Removes the data with the given name from the internal data store

Fire 9

time(expr, then, after, loop = FALSE) Add a timed evaluation (expr) that will be evalu-
ated after the given number of seconds (after), potentially repeating if loop = TRUE. After
the expression has evaluated the then function will get called with the result of the expression
and the server object as arguments.

remove_time(id) Removes the timed evaluation identified by the id (returned when adding the
evaluation)

delay(expr, then) Similar to time(), except the expr is evaluated immediately at the end of the
loop cycle (see here for detailed explanation of delayed evaluation in fiery).

remove_delay(id) Removes the delayed evaluation identified by the id

async(expr, then) As delay() and time() except the expression is evaluated asynchronously.
The progress of evaluation is checked at the end of each loop cycle

remove_async(id) Removes the async evaluation identified by the id. The evaluation is not nec-
essarily stopped but the then function will not get called.

set_client_id_converter(converter) Sets the function that converts an HTTP request into a
specific client id

set_logger(logger) Sets the function that takes care of logging

set_client_id_converter(converter) Sets the function that converts an HTTP request into a
specific client id

clone() Create a copy of the full Fire object and return that

See Also

events describes how the server event cycle works

plugins describes how to use plugins to modify the server

Examples

Create a New App
app <- Fire$new(port = 4689)

Setup the data every time it starts
app$on('start', function(server, ...) {

server$set_data('visits', 0)
server$set_data('cycles', 0)

})

Count the number of cycles
app$on('cycle-start', function(server, ...) {

server$set_data('cycles', server$get_data('cycles') + 1)
})

Count the number of requests
app$on('before-request', function(server, ...) {

server$set_data('visits', server$get_data('visits') + 1)
})

Handle requests
app$on('request', function(server, ...) {

10 loggers

list(
status = 200L,
headers = list('Content-Type' = 'text/html'),
body = paste('This is indeed a test. You are number', server$get_data('visits'))

)
})

Show number of requests in the console
app$on('after-request', function(server, ...) {

message(server$get_data('visits'))
flush.console()

})

Terminate the server after 300 cycles
app$on('cycle-end', function(server, ...) {

if (server$get_data('cycles') > 300) {
message('Ending...')
flush.console()
server$extinguish()

}
})

Be polite
app$on('end', function(server) {

message('Goodbye')
flush.console()

})

Not run:
app$ignite(showcase = TRUE)

End(Not run)

loggers App Logging

Description

fiery has a build in logging mechanism that lets you capture event information however you like.
Every user-injested warnings and errors are automatically captured by the logger along with most
system errors as well. fiery tries very hard not to break due to faulty app logic. This means that
any event handler error will be converted to an error log without fiery stopping. In the case of
request handlers a 500L response will be send back if any error is encountered.

Usage

logger_null()

logger_console(format = "{time} - {event}: {message}")

loggers 11

logger_file(file, format = "{time} - {event}: {message}")

logger_switch(..., default = logger_null())

common_log_format

combined_log_format

Arguments

format A glue string specifying the format of the log entry

file A file or connection to write to

... A named list of loggers to use for different events. The same semantics as switch
is used so it is possible to let events fall through e.g. logger_switch(error =, warning = logger_file('errors.log')).

default A catch-all logger for use with events not defined in ...

Format

An object of class character of length 1.

Setting a logger

By default, fiery uses logger_null() which forwards warning and error messages to stderr()
and ignores any other logging events. To change this behavior, set a different logger using the
set_logger() method:

app$set_logger(logger)

where logger is a function taking at least the following arguments: event, message, request,
time, and

fiery comes with some additional loggers, which either writes all logs to a file or to the console.
A new instance of the file logger can be created with logger_file(file):

app$set_logger(logger_file('fiery_log.log'))

A new instance of the console logger can be create with logger_console():

app$set_logger(logger_console())

Both functions takes a format a argument that lets you customise how the log is written. Fur-
thermore the console logger will style the logs with colour coding depending on the content if the
console supports it.

As a last possibility it is possible to use different loggers dependent on the event by using the switch
logger:

app$set_logger(logger_switch(warning =,
error = logger_file('errors.log),
default = logger_file('info.log')))

12 loggers

Automatic logs

fiery logs a number of different information by itself describing its operations during run. The
following events are send to the log:

start Will be send when the server starts up

resume Will be send when the server is resumed

stop Will be send when the server stops

request Will be send when a request has been handled. The message will contain information about
how long time it took to handle the request or if it was denied.

websocket Will be send every time a WebSocket connection is established or closed as well as when
a message is received or send

message Will be send every time a message is emitted by an event handler or delayed execution
handler

warning Will be send everytime a warning is emitted by an event handler or delayed execution
handler

error Will be send everytime an error is signaled by an event handler or delayed execution handler.
In addition some internal functions will also emit error event when exceptions are encountered

By default only message, warning and error events will be logged by sending them to the error
stream as a message().

Access Logs

Of particular interest are logs that detail requests made to the server. These are the request events
detailed above. There are different standards for how requests are logged. fiery uses the Common
Log Format by default, but this can be modified by setting the access_log_format field to a glue
expression that has access to the following variables:

start_time The time the request was recieved

end_time The time the response was send back

request The Request object

response The Response object

id The client id

To change the format:

app$access_log_format <- combined_log_format

Custom logs

Apart from the standard logs described above it is also possible to send messages to the log as you
please, e.g. inside event handlers. This is done through the log() method where you at the very
least specify an event and a message. In general it is better to send messages through log() rather
than with warning() and stop() even though the latters will eventually be caught, as it gives you
more control over the logging and what should happen in the case of an exception.

An example of using log() in a handler could be:

plugin_doc 13

app$on('header', function(server, id, request) {
server$log('info', paste0('request from ', id, ' received'), request)

})

Which would log the timepoint the headers of a request has been recieved.

plugin_doc Plugin Interface

Description

In order to facilitate encapsulate functionality that can be shared between fiery servers fiery
implements a plugin interface. Indeed, the reason why fiery is so minimal in functionality is
because it is intended as a foundation for separate plugins that can add convenience and power.
This approach allows fiery itself to remain unopinionated and flexible.

Using Plugins

Plugins are added to a Fire object using the attach() method. Any parameters passed along with
the plugin to the attach() method will be passed on to the plugins on_attach() method (see
below).

app$attach(plugin)

Creating Plugins

The fiery plugin specification is rather simple. A plugin is either a list or environment (e.g. a
RefClass or R6 object) with the following elements:

on_attach(server, ...) A function that will get called when the plugin is attached to the server.
It is passed the server object as the first argument along with any arguments passed to the
attach() method.

name A string giving the name of the plugin

require Optional A character vector giving names of other plugins that must be attached for this
plugin to work

Apart from this, the list/environment can contain anything you desires. For an example of a rela-
tively complex plugin, have a look at the source code for the routr package.

Accessing Plugins

When a plugin is attached to a Fire object, two things happens. First, the on_attach() function in
the plugin is called modifying the server in different ways, then the plugin object is saved internally,
so that it can later be retrieved. All plugins are accessible in the plugins field under the name of
the plugin. This is useful for plugins that modifies other plugins, or are dependent on functionality
in other plugins. A minimal example of a plugin using another plugin could be:

https://github.com/thomasp85/routr

14 random_port

plugin <- list(
on_attach = function(server) {
router <- server$plugins$request_routr
route <- Route$new()
route$add_handler('all', '*', function(request, response, arg_list, ...) {
message('Hello')
TRUE

})
router$add_route(route, 1)

},
name = 'Hello_plugin',
require = 'request_routr'

)

The Hello_plugin depends on the routr plugin for its functionality as it modifies the request router
to always say hello when processing requests. If the reques_routr plugin has not already been
attached it is not possible to use the Hello_plugin plugin.

It is also possible to have a soft dependency to another plugin, by not listing it in require and
instead use the has_plugin() method in the server to modify the behaviour of the plugin. We
could rewrite the Hello_plugin to add the routr plugin by itself if missing:

plugin <- list(
on_attach = function(server) {
if (!server$has_plugin('request_routr')) {
server$attach(RouteStack$new())

}
router <- server$plugins$request_routr
route <- Route$new()
route$add_handler('all', '*', function(request, response, arg_list, ...) {
message('Hello')
TRUE

})
router$add_route(route, 1)

},
name = 'Hello_plugin2'

)

See Also

Fire describes how to create a new server

events describes how the server event cycle works

random_port Select a random safe port

random_port 15

Description

This is a small utility function to get random safe ports to run your application on. It chooses a port
within the range that cannot be registeret to IANA and thus is safe to assume are not in use.

Usage

random_port()

Value

An integer in the range 49152-65535

Examples

random_port()

Index

∗Topic datasets
Fire, 7
loggers, 10

async (delay_doc), 3

combined_log_format, 8
combined_log_format (loggers), 10
common_log_format, 8
common_log_format (loggers), 10

delay (delay_doc), 3
delay_doc, 3

event documentation, 7, 8
event_doc, 4
events, 2, 9, 14
events (event_doc), 4

fiery (fiery-package), 2
fiery-package, 2
Fire, 2, 7, 7, 13, 14
future, 3
future::multiprocess(), 3

glue, 8, 11, 12

httpuv, 2

logger_console (loggers), 10
logger_file (loggers), 10
logger_null (loggers), 10
logger_switch (loggers), 10
loggers, 10
logging (loggers), 10

message(), 12

plugin documentation, 8
plugin_doc, 13
plugins, 2, 7, 9

plugins (plugin_doc), 13
plugins has its own documentation, 7

R6, 7, 13
random_port, 14
RefClass, 13

see here, 9
server log, 4
switch, 11

time (delay_doc), 3

16

	fiery-package
	delay_doc
	event_doc
	Fire
	loggers
	plugin_doc
	random_port
	Index

