missingHE Travis-CI Build StatusAppVeyor Build StatusCRAN_Status_BadgeCRAN_Download_BadgeCRAN_Download_Badge

Missing Outcome Data in Health Economic Evaluation

Contains a suite of functions for health economic evaluations with missing outcome data. The package can fit different types of statistical models under a fully Bayesian approach using Markov Chain Monte Carlo (MCMC) methods. Three classes of models can be fitted under a variety of missing data assumptions: selection models, pattern mixture models and hurdle models. In addition to model fitting, missingHE provides a set of specialised functions to assess model convergence and summarise the statistical and economic results using different types of measures and graphs.

Installation

There are two ways of installing missingHE. A “stable” version is packaged and binary files are available for Windows and as source. To install the stable version on a Windows machine, run the following command

install.packages("missingHE")

which installs the package from a CRAN mirror and ensures that install.packages() can also install the “dependencies” (e.g. other packages that are required for missingHE to work).

It is also possible to install missingHE using the “development” version - this will usually be updated frequently and may be continuously tested. On Windows machines, you need to install a few dependencies, including Rtools first, e.g. by running

pkgs <- c("R2jags","ggplot2","gridExtra","BCEA","ggmcmc","loo","Rtools","devtools")
repos <- c("https://cran.rstudio.com") 
install.packages(pkgs,repos=repos,dependencies = "Depends")

before installing the package using devtools:

devtools::install_github("AnGabrio/missingHE")

All models implemented in missingHE are written in the BUGS language using the software JAGS, which needs to be installed from its own repository and instructions for installations under different OS can be found online. Once installed, the software is called in missingHE via the R package R2jags. Note that the missingHE package is currently under active development and therefore it is advisable to reinstall the package directly from GitHub before each use to ensure that you are using the most updated version.