Package ‘specr’

March 26, 2020
Title Conducting and Visualizing Specification Curve Analyses
Version 0.2.1

Description Provides utilities for conducting specification curve analyses (Simonsohn, Sim-
mons & Nelson (2015, <doi: 10.2139/ssrn.2694998>) or multiverse analyses (Steegen, Tuer-
linckx, Gelman & Vanpaemel, 2016, <doi: 10.1177/1745691616658637>) including func-
tions to setup, run, evaluate, and plot all specifications.

License GPL-3
URL https://masurp.github.io/specr/, https://github.com/masurp/specr

BugReports https://github.com/masurp/specr/issues
Depends R (>=3.5.0)

Imports broom, cowplot, dplyr, ggplot2, ggraph, glue, igraph, Ime4,
magrittr, purrr, rlang, tibble, tidyr

Suggests knitr, testthat, tidyverse, performance, progress, rmarkdown
Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation no

Author Philipp K. Masur [aut, cre] (<https://orcid.org/0000-0003-3065-7305>),
Michael Scharkow [aut]

Maintainer Philipp K. Masur <phil.masur@gmail.com>
Repository CRAN
Date/Publication 2020-03-26 13:40:02 UTC

R topics documented:

example_data
ICC_SPECS + v v v o e e e e e e e e e e e e e e e e
plot_choices L

https://masurp.github.io/specr/
https://github.com/masurp/specr
https://github.com/masurp/specr/issues

2 icc_specs
PIOL_CUIVE e e e e e e 4
plot_decisiontree e e e e e e 6
plot_samplesizes e 7
PIOL_SPECS . . o . o e e e e e e 8
plot_summary e e 10
Plot_variance e e e e e e e e e e e 11
TUNL_SPECS & v v v v e 12
SELUP_SPECS . . .« vt i e e e e e e e e e e e 13
SUMMATISE_SPECS « « v v v v v e e v e e e e e e e e e e e e e e e e e e e 14

Index 16

example_data Example data set

Description

This simulated data set can be used to explore the major function of ’specr’.

Usage

data(example_data)

Format

A tibble

Examples

data(example_data)
head(example_data)

icc_specs Compute intraclass correlation coefficient

Description

This function extracts intraclass correlation coefficients (ICC) from a multilevel model. It can be
used to decompose the variance in the outcome variable of a specification curve analysis (e.g., the
regression coefficients). This approach summarises the relative importance of analytical choices
by estimating the share of variance in the outcome (e.g., the regression coefficient) that different
analytical choices or combinations therefor account for. To use this approach, one needs to estimate
a multilevel model that includes all analytical choices as grouping variables (see examples).

Usage

icc_specs(model, percent = TRUE)

plot_choices

Arguments

model

percent

Value

a multilevel (i.e., mixed effects) model that captures the variances of the speci-
fication curve.

a logical value indicating whether the ICC should also be printed as percentage.
Defaults to TRUE.

a tibble including the grouping variable, the random effect variances, the raw intraclass correlation
coefficient (ICC), and the ICC in percent.

References

* Hox, J. J. (2010). Multilevel analysis: techniques and applications. New York: Routledge.

See Also

plot_variance() to plot the variance decomposition.

Examples

Step 1: Run spec curve analysis
results <- run_specs(df = example_data,

y = c("y1", "y2"y,
X = C(IIX1 lIy "XZII),
model = c("1Im"))

Step 2: Estimate a multilevel model without predictors
model <- 1me4::lmer(estimate ~ 1 + (1|x) + (1]y), data = results)

Step 3: Estimate intra-class correlation

icc_specs(model)

plot_choices

Plot how analytical choices affect results

Description

This functions plots how analytical choices affect the obtained results (i.e., the rank within the
curve). Significant results are highlighted (negative = red, positive = blue, grey = nonsignificant).
This functions creates the lower panel in plot_specs().

4 plot_curve

Usage
plot_choices(
df,
choices = c("x", "y", "model”, "controls”, "subsets"),
desc = FALSE,
null = @
)
Arguments
df a data frame resulting from run_specs().
choices a vector specifying which analytical choices should be plotted. By default, all
choices are plotted.
desc logical value indicating whether the curve should the arranged in a descending
order. Defaults to FALSE.
null Indicate what value represents the 'null’ hypothesis (Defaults to zero).
Value
a ggplot object.
Examples

Run specification curve analysis
results <- run_specs(df = example_data,
y = c("y1", "y2"),
X = C("X1 II’ ”XZH),
model = c("1m"),
controls = c("c1", "c2"),
subsets = list(groupl = unique(example_data$group1),
group2 = unique(example_data$group2)))

Plot simple table of choices
plot_choices(results)

Plot only specific choices
plot_choices(results,
choices = c("x", "y", "controls"))

plot_curve Plot ranked specification curve

Description

This function plots the a ranked specification curve. Confidence intervals can be included. Signifi-
cant results are highlighted (negative = red, positive = blue, grey = nonsignificant). This functions
creates the upper panel in plot_specs().

plot_curve

Usage

plot_curve(

df,

desc = FALSE,
ci = TRUE,
ribbon

FALSE,

legend = FALSE,

null =0

Arguments

df

desc

ci
ribbon
legend
null

Value

a ggplot object.

Examples

a data frame resulting from run_specs().

logical value indicating whether the curve should the arranged in a descending
order. Defaults to FALSE.

logical value indicating whether confidence intervals should be plotted.
logical value indicating whether a ribbon instead should be plotted.
logical value indicating whether the legend should be plotted Defaults to FALSE.

Indicate what value represents the null hypothesis (Defaults to zero)

load additional library
library(ggplot2) # for further customization of the plots

Run specification curve analysis
results <- run_specs(df = example_data,

y = c("y1", "y2"),

x = c("x1", "x2"),

model = c("1m"),

controls = c("c1"”, "c2"),

subsets = list(groupl = unique(example_data$group1l),
group2 = unique(example_data$group2)))

Plot simple specification curve
plot_curve(results)

Ribbon instead of CIs and customize further

plot_curve(results, ci = FALSE, ribbon = TRUE) +
geom_hline(yintercept = @) +
geom_hline(yintercept = median(results$estimate),

linetype = "dashed") +

theme_linedraw()

6 plot_decisiontree

plot_decisiontree Plot decision tree

Description

This function plots a simple decision tree that is meant to help understanding how few analytical
choices may results in a large number of specifications. It is somewhat useless if the final number
of specifications is very high.

Usage

plot_decisiontree(df, label = FALSE, legend = FALSE)

Arguments
df data frame resulting from run_specs().
label Logical. Should labels be included? Defaults to FALSE. Produces only a rea-
sonable plot if number of specifications is low.
legend Logical. Should specific decisions be identifiable. Defaults to FALSE.
Value
a ggplot object.
Examples

results <- run_specs(df = example_data,
y = C(Iry-l IV’ Ilyzll)’
x = c("x1", "x2"),
model = c("1m"),
controls = c("c1", "c2"))

Basic, non-labelled decisions tree
plot_decisiontree(results)

Labelled decisions tree
plot_decisiontree(results, label = TRUE)

Add legend
plot_decisiontree(results, label = TRUE, legend = TRUE)

plot_samplesizes 7

plot_samplesizes Plot sample sizes

Description
This function plots a histogram of sample sizes per specification. It can be added to the overall
specification curve plot (see vignettes).

Usage

plot_samplesizes(df, desc = FALSE)

Arguments
df a data frame resulting from run_specs().
desc logical value indicating whether the curve should the arranged in a descending
order. Defaults to FALSE.
Value
a ggplot object.
Examples

load additional library
library(ggplot2) # for further customization of the plots

run specification curve analysis
results <- run_specs(df = example_data,
y = c("y1", "y2"),
x = c("x1", "x2"),
model = c("1m"),
controls = c("c1", "c2"),
subsets = list(groupl = unique(example_data$group1),
group2 = unique(example_data$group2)))
plot ranked bar chart of sample sizes
plot_samplesizes(results)

customize
plot_samplesizes(results) +
geom_hline(yintercept = median(results$obs),
color = "darkgrey”,
linetype = "dashed”) +
theme_linedraw()

8 plot_specs

plot_specs Plot specification curve and analytical choices

Description

This function plots an entire visualization of the specification curve analysis. The function uses the
entire tibble that is produced by run_specs() to create a standard visualization of the specifica-
tion curve analysis. Alternatively, one can also pass two separately created ggplot objects to the
function. In this case, it simply combines them using cowplot: :plot_grid. Significant results are
highlighted (negative = red, positive = blue, grey = nonsignificant).

Usage

plot_specs(
df = NULL,
plot_a = NULL,
plot_b = NULL,
choices = c("x", "y", "model”, "controls”, "subsets"),
labels = c("A", "B"),
rel_heights = c(2, 3),

desc = FALSE,
null = 9,
ci = TRUE,

ribbon = FALSE,
sample_perc = 1,

Arguments
df a data frame resulting from run_specs().
plot_a a ggplot object resulting from plot_curve() (or plot_choices() respectively).
plot_b a ggplot object resulting from plot_choices() (or plot_curve() respectively).
choices a vector specifying which analytical choices should be plotted. By default, all
choices are plotted.
labels labels for the two parts of the plot

rel_heights vector indicating the relative heights of the plot.

desc logical value indicating whether the curve should the arranged in a descending
order. Defaults to FALSE.

null Indicate what value represents the 'null’ hypothesis (defaults to zero).
ci logical value indicating whether confidence intervals should be plotted.

ribbon logical value indicating whether a ribbon instead should be plotted.

plot_specs 9

sample_perc numeric value denoting what percentage of the specifications should be plot-
ted. Needs to be strictly greater than 0 and smalle than 1. Defaults to 1 (=
all specifications). Drawing a sample from all specification usually makes only
sense of the number of specifications is very large and one wants to simplify the
visualization.

additional arguments that can be passed to plot_grid().

Value

a ggplot object.

See Also

* plot_curve() to plot only the specification curve.
* plot_choices() to plot only the choices panel.

* plot_samplesizes() to plot a histogram of sample sizes per specification.

Examples

load additional library
library(ggplot2) # for further customization of the plots

run spec analysis
results <- run_specs(example_data,
y = c("y1”, "y2"),
x = c("x1", "x2"),
model = "1m",
controls = c("c1", "c2"),
subset = list(groupl = unique(example_data$groupl)))

plot results directly
plot_specs(results)

Customize each part and then combine

p1 <- plot_curve(results) +
geom_hline(yintercept = @, linetype = "dashed”, color = "grey") +
ylim(-3, 12) +
labs(x = "", y = "regression coefficient")

p2 <- plot_choices(results) +
labs(x = "specifications (ranked)")

plot_specs(plot_a = pi, # arguments must be called directly!
plot_b = p2,
rel_height = c(2, 2))

10 plot_summary

plot_summary Create box plots for given analytical choices

Description

This function provides a convenient way to visually investigate the effect of individual choices on
the estimate of interest. It produces box-and-whisker plot(s) for each provided analytical choice.

Usage
plot_summary(df, choices = c("x", "y", "model”, "controls”, "subsets"))
Arguments
df a data frame resulting from run_specs().
choices a vector specifying which analytical choices should be plotted. By default, all
choices are plotted.
Value
a ggplot object.
See Also

summarise_specs() to investigate the affect of analytical choices in more detail.

Examples

run spec analysis
results <- run_specs(example_data,
y = c(y1”, "y2"),
x = c("x1", "x2"),
model = "1m",
controls = c("c1", "c2"),
subset = list(groupl = unique(example_data$groupl)))

plot boxplot comparing specific choices
plot_summary(results, choices = c("”subsets”, "controls”, "y"))

plot_variance 11

plot_variance Plot variance decomposition

Description

This functions creates a simple barplot that visually displays how much variance in the outcome
(e.g., the regression coefficient) different analytical choices or combinations therefor account for.
To use this approach, one needs to estimate a multilevel model that includes all analytical choices as
grouping variables (see examples and vignettes). This function uses icc_specs() to compute the
intraclass correlation coefficients (ICCs), which provides the data basis for the plot (see examples).

Usage

plot_variance(model)

Arguments
model a multilevel model that captures the variances of the specification curve (based
on the data frame resulting from run_specs).
Value
a ggplot object.
See Also

icc_specs() to produce a tibble that details the variance decomposition.

Examples

Step 1: Run spec curve analysis

results <- run_specs(df = example_data,
y = c(lly1 II’ Ilyzll),
x = c("x1", "x2"),
model = c("1m"))

Step 2: Estimate multilevel model
library(lme4, quietly = TRUE)
model <- lmer(estimate ~ 1 + (1|x) + (1]y), data = results)

Step 3: Plot model
plot_variance(model)

12 run_specs

run_specs Estimate all specifications

Description

This is the central function of the package. It runs the specification curve analysis. It takes the data
frame and vectors for analytical choices related to the dependent variable, the independent variable,
the type of models that should be estimated, the set of covariates that should be included (none, each
individually, and all together), as well as a named list of potential subsets. The function returns a
tidy tibble which includes relevant model parameters for each specification. The function tidy is
used to extract relevant model parameters. Exactly what tidy considers to be a model component
varies across models but is usually self-evident.

Usage

run_specs(
df,
X)
Y,
model = "1m",
controls = NULL,
subsets = NULL,
conf.level = 0.95,
keep.results = FALSE

)
Arguments
df a data frame that includes all relevant variables
X a vector denoting independent variables
y a vector denoting the dependent variables
model a vector denoting the model(s) that should be estimated.
controls a vector denoting which control variables should be included. Defaults to NULL.
subsets a named list that includes potential subsets that should be evaluated (see exam-
ples). Defaults to NULL.
conf.level the confidence level to use for the confidence interval. Must be strictly greater

than 0 and less than 1. Defaults to .95, which corresponds to a 95 percent confi-
dence interval.

keep.results a logical value indicating whether the complete model object should be kept.
Defaults to FALSE.

Value

a tibble that includes all specifications and a tidy summary of model components.

setup_specs 13

References

* Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2019). Specification Curve: Descriptive and
Inferential Statistics for all Plausible Specifications. Available at: https://doi.org/10.2139/ssrn.2694998

» Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing Transparency
Through a Multiverse Analysis. Perspectives on Psychological Science, 11(5), 702-712.
https://doi.org/10.1177/1745691616658637

See Also

plot_specs() to visualize the results of the specification curve analysis.

Examples

run specification curve analysis
results <- run_specs(df = example_data,
y = c('y1”, "y2"),
x = c("x1", "x2"),
model = c("1m"),
controls = c("c1", "c2"),
subsets = list(groupl unique(example_data$groupl),
group2 = unique(example_data$group2)))

Check results frame
results

setup_specs Set up specifications

Description

This function creates a tibble that includes all possible specifications based the dependent and in-
dependent variables, model types, and control variables that are specified. This function simply
produces a tibble of all combinations. It can be used to check the specified analytical choices. This
function is called within run_specs(), which estimates all specified models based on the data that
are provided.

Usage

setup_specs(x, y, model, controls = NULL)

Arguments
X a vector denoting independent variables
y a vector denoting the dependent variables
model a vector denoting the model(s) that should be estimated.

controls a vector of the control variables that should be included. Defaults to NULL.

14 summarise_specs

Value

a tibble that includes all possible specifications based on combinations of the analytical choices.

See Also

run_specs() to run the specification curve analysis.

Examples

setup_specs(y = c("y1"),
x = c("x1", "x2"y,
model = c("1m"),
controls = c("c1", "c2"))

summarise_specs Summarise specifications

Description

This function allows to inspect results of the specification curves by returning a comparatively sim-
ple summary of the results. This summary can be produced for various specific analytical choices
and customized summary functions.

Usage
summarise_specs(
df,
var = .data$estimate,

stats = list(median = median, mad = mad, min = min, max = max, 25 = function(x)
quantile(x, prob = 0.25), q75 = function(x) quantile(x, prob = 0.75))

)
Arguments

df a data frame resulting from run_specs().
one or more grouping variables (e.g., subsets, controls,...) that denote the avail-
able analytical choices.

var which variable should be evaluated? Defaults to estimate (the effect sizes com-
puted by run_specs()).

stats named vector or named list of summary functions (individually defined sum-

mary functions can included). If it is not named, placeholders (e.g., "fnl") will
be used as column names.

summarise_specs 15

Value

a tibble.

See Also

plot_summary() to visually investigate the affect of analytical choices.

Examples

Run specification curve analysis
results <- run_specs(df = example_data,
y = C(Ily1 Ily "yzll),
x = c("x1", "x2"),
model = c("1m"),
controls = c("c1”, "c2"),
subsets = list(groupl = unique(example_data$groupl),
group2 = unique(example_data$group2)))

overall summary
summarise_specs(results)

Summary of specific analytical choices
summarise_specs(results, # data frame
X, y) # analytical choices

Summary of other parameters across several analytical choices
summarise_specs(results,
subsets, controls,
var = p.value,
stats = list(median = median,
min = min,
max = max))

Unnamed vector instead of named list passed to ‘stats®
summarise_specs(results,

controls,

stats = c(mean, median))

Index

+Topic datasets
example_data, 2

example_data, 2
ggplot, 4-11

icc_specs, 2
icc_specs(), 11

plot_choices, 3
plot_choices(), 9
plot_curve, 4
plot_curve(), 9
plot_decisiontree, 6
plot_samplesizes, 7
plot_samplesizes(), 9
plot_specs, 8
plot_specs(), I3
plot_summary, 10
plot_summary(), 15
plot_variance, 11
plot_variance(), 3

run_specs, 12
run_specs(), 6, 13, 14

setup_specs, 13
summarise_specs, 14
summarise_specs(), 10

tibble, 3, 8, 12, 14, 15
tidy, 12

16

	example_data
	icc_specs
	plot_choices
	plot_curve
	plot_decisiontree
	plot_samplesizes
	plot_specs
	plot_summary
	plot_variance
	run_specs
	setup_specs
	summarise_specs
	Index

