This document presents analysis of a GRTS survey design for a linear resource. The linear resource used in the analysis is streams in the Upper Wabash basin in Indiana. The analysis will include calculation of three types of population estimates: (1) estimation of proportion and size (length of streams) for site evaluation status categorical variables; (2) estimation of proportion and size for stream condition categorical variables; and (3) estimation of the cumulative distribution function (CDF) and percentiles for quantitative variables. Testing for difference between CDFs from subpopulations also will be presented.

The initial step is to use the `library`

function to load the `spsurvey`

package. After the package is loaded, a message is printed to the R console indicating that the `spsurvey`

package was loaded successfully.

Load the `spsurvey`

package:

The next step is to load the data set, which includes both survey design variables and analytical variables. The data function is used to load the data set and assign it to a data frame named `IN_streams`

. The `nrow`

function is used to determine the number of rows in the `IN_streams`

data frame, and the resulting value is assigned to an object named `nr`

. Finally, the initial six lines and the final six lines in the `IN_streams`

data frame are printed using the `head`

and `tail`

functions, respectively.

Load the survey design and analytical variables data set:

Display the initial six lines in the data file:

```
head(IN_streams)
#> siteID xcoord ycoord wgt Strahler_Cat Status
#> 1 INRB98-001 7574790 12556023 180.49965 1st Landowner_Denial
#> 2 INRB98-002 7490591 12580092 180.49965 1st Sampled
#> 3 INRB98-003 7500191 12545177 57.70535 2nd Sampled
#> 4 INRB98-004 7543103 12557747 26.40031 4th Landowner_Denial
#> 5 INRB98-005 7459317 12689535 29.59298 3rd Sampled
#> 6 INRB98-006 7515604 12649037 57.70535 2nd Physical_Barrier
#> TNT IBI_Score IBI_Status QHEI_Score QHEI_Status
#> 1 Target NA <NA> NA <NA>
#> 2 Target 50 Not_Impaired 48 Impaired
#> 3 Target 22 Impaired 65 Not_Impaired
#> 4 Target NA <NA> NA <NA>
#> 5 Target 38 Not_Impaired 31 Impaired
#> 6 Target NA <NA> NA <NA>
```

Display the final six lines in the data file:

```
tail(IN_streams)
#> siteID xcoord ycoord wgt Strahler_Cat Status
#> 95 INRB98-095 7503526 12628573 57.70535 2nd Landowner_Denial
#> 96 INRB98-096 7496050 12662272 180.49965 1st NonTarget
#> 97 INRB98-097 7483750 12664829 29.59298 3rd Chemistry_Only
#> 98 INRB98-098 7496653 12634435 180.49965 1st NonTarget
#> 99 INRB98-099 7443579 12609765 26.40031 4th Sampled
#> 100 INRB98-100 7445529 12651391 26.40031 4th Chemistry_Only
#> TNT IBI_Score IBI_Status QHEI_Score QHEI_Status
#> 95 Target NA <NA> NA <NA>
#> 96 NonTarget NA <NA> NA <NA>
#> 97 Target NA <NA> NA <NA>
#> 98 NonTarget NA <NA> NA <NA>
#> 99 Target 48 Not_Impaired 78 Not_Impaired
#> 100 Target NA <NA> NA <NA>
```

The sample of streams in Indiana is displayed in the figure below. The sample sites for each Strahler order are displayed using a unique color.

The first analysis that will be examined is calculation of extent estimates for site status evaluation variables. Extent is measured both by the proportion of the resource in status evaluation categories and by size of the resource in each category. For a linear resource like streams, size refers to the length of streams in a category. For calculating extent estimates (and for all of the analyses we will consider), the survey design weights are incorporated into the calculation process. Weights used in the analyses were modified from the original survey design weights to ensure that the weights sum to the known size of the resource. Further information regarding weight adjustment is provided in the help page for the `adjwgt`

(weight adjustment) function. Two site status variables will be examined: (1) status, which classifies streams into seven evaluation categories and (2) TNT, which classifies streams as either “Target” or “NonTarget”. The `table`

and `addmargins`

functions are used to create tables displaying the count for each code (level) of the two status variables.

Use the `table`

and `addmargins`

functions to create a table displaying the count for each code of the status variable:

```
cat("\nA table displaying the number of values for each level of the status
variable follows:\n")
#>
#> A table displaying the number of values for each level of the status
#> variable follows:
addmargins(table(IN_streams$Status))
#>
#> Chemistry_Only Landowner_Denial NonTarget
#> 14 19 9
#> Physical_Barrier Sampled Target_Not_Sampled
#> 7 48 2
#> Unknown Sum
#> 1 100
```

Use the table and addmargins functions to create a table displaying the count for each code of the TNT variable

```
cat("\nA table displaying the number of values for each level of the TNT
variable follows:\n")
#>
#> A table displaying the number of values for each level of the TNT
#> variable follows:
addmargins(table(IN_streams$TNT))
#>
#> NonTarget Target Sum
#> 10 90 100
```

The `cat.analysis`

function in the `spsurvey`

package will be used to calculate extent estimates. Four data frames constitute the primary input to the cat.analysis function. The first column (variable) in the four data frames provides the unique identifier (site ID) for each sample site and is used to connect records among the data frames. The siteID variable in the `IN_streams`

data frame is assigned to the siteID variable in the data frames. The four data frames that will be created are named as follows: `sites`

, `subpop`

, `design`

, and `data.cat`

. The `sites`

data frame identifies sites to use in the analysis and contains two variables: (1) siteID - site ID values and (2) Use - a logical vector indicating which sites to use in the analysis. The `rep`

(repeat) function is used to assign the value TRUE to each element of the Use variable. Recall that `nr`

is an object containing the number of rows in the `IN_streams`

data frame. The `subpop`

data frame defines populations and, optionally, subpopulations for which estimates are desired. Unlike the `sites`

and `design`

data frames, the `subpop`

data frame can contain an arbitrary number of columns. The first variable in the `subpop`

data frame identifies site ID values and each subsequent variable identifies a type of population, where the variable name is used to identify type. A type variable identifies each site with a character value. If the number of unique values for a type variable is greater than one, then the set of values represent subpopulations of that type. When a type variable consists of a single unique value, then the type does not contain subpopulations. For this analysis, the `subpop`

data frame contains three variables: (1) siteID - site ID values, (2) Upper_Wabash - which will be used to calculate estimates for all of the sample sites combined, and (3) Strahler_Order - which will be used to calculate estimates for each Strahler order individually. The Strahler_order variable in the `IN_streams`

data frame is assigned to the Strahler_Order variable in the `subpop`

data frame. The `design`

data frame consists of survey design variables. For the analysis under consideration, the `design`

data frame contains the following variables: (1) siteID - site ID values; (2) wgt - final, adjusted, survey design weights; (3) xcoord - x-coordinates for location; and (4) ycoord - y-coordinates for location. The wgt, xcoord, and ycoord variables in the `design`

data frame are assigned values using variables with the same names in the `IN_streams`

data frame. Like the `subpop`

data frame, the `data.cat`

data frame can contain an arbitrary number of columns. The first variable in the `data.cat`

data frame identifies site ID values and each subsequent variable identifies a response variable. The two response variables are Status and Target_NonTarget, which are assigned the status and TNT variables, respectively, in the `IN_streams`

data frame. Missing data (NA) is allowed for the response variables, which are the only variables in the input data frames for which NA values are allowed.

Conduct an analysis of site status evaluation variables. Create the sites data frame, which identifies sites to use in the analysis. Note that all sites will be used to estimate number of streams in each category:

Create the `subpop`

data frame, which defines populations and subpopulations for which estimates are desired:

```
subpop <- data.frame(siteID=IN_streams$siteID,
Upper_Wabash=rep("Upper Wabash", nr),
Strahler_Order=IN_streams$Strahler_Cat)
```

Create the `design`

data frame, which identifies the stratum code, weight, x-coordinate, and y-coordinate for each site ID:

```
design <- data.frame(siteID=IN_streams$siteID,
wgt=IN_streams$wgt,
xcoord=IN_streams$xcoord,
ycoord=IN_streams$ycoord)
```

Create the `data.cat`

data frame, which specifies the variables to use in the analysis

```
data.cat <- data.frame(siteID=IN_streams$siteID,
Status=IN_streams$Status,
Target_NonTarget=IN_streams$TNT)
```

Use the `cat.analysis`

function to calculate extent estimates for the site status evaluation variables:

The extent estimates for all basins combined are displayed using the `print`

function. The object produced by `cat.analysis`

is a data frame containing thirteen columns. The first five columns identify the population (Type), subpopulation (Subpopulation), response variable (Indicator), levels of the response variable (Category), and number of values in a category (NResp). A category labeled “Total” is included for each combination of population, subpopulation, and response variable. The next four columns in the data frame provide results for the proportion (percent scale) estimates: the proportion estimate (Estimate.P), standard error of the estimate (StdError.P), lower confidence bound (LCB95Pct.P), and upper confidence bound (UCB95Pct.P). Argument conf for `cat.analysis`

allows control of the confidence bound level. The default value for conf is 95, hence the column names for confidence bounds contain the value 95. Supplying a different value to the conf argument will be reflected in the confidence bound names. Confidence bounds are obtained using the standard error and the Normal distribution multiplier corresponding to the confidence level. The final four columns in the data frame provide results for the size (units scale) estimates: the size estimate (Estimate.U), standard error of the estimate (StdError.U), lower confidence bound (LCB95Pct.U), and upper confidence bound (UCB95Pct.U). Note that the size estimate for the Total category will be equal to the sum of the survey design weights.

Print the extent estimates for all basins combined:

```
print(Extent_Estimates[c(1:8, 32:34),])
#> Type Subpopulation Indicator Category NResp
#> 1 Upper_Wabash Upper Wabash Status Chemistry_Only 14
#> 2 Upper_Wabash Upper Wabash Status Landowner_Denial 19
#> 3 Upper_Wabash Upper Wabash Status NonTarget 9
#> 4 Upper_Wabash Upper Wabash Status Physical_Barrier 7
#> 5 Upper_Wabash Upper Wabash Status Sampled 48
#> 6 Upper_Wabash Upper Wabash Status Target_Not_Sampled 2
#> 7 Upper_Wabash Upper Wabash Status Unknown 1
#> 8 Upper_Wabash Upper Wabash Status Total 100
#> 32 Upper_Wabash Upper Wabash Target_NonTarget NonTarget 10
#> 33 Upper_Wabash Upper Wabash Target_NonTarget Target 90
#> 34 Upper_Wabash Upper Wabash Target_NonTarget Total 100
#> Estimate.P StdError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U
#> 1 6.5597397 1.6598843 3.3064261 9.8130532 482.67548 110.03523
#> 2 17.8769326 3.7404140 10.5458559 25.2080092 1315.41150 285.35722
#> 3 22.0775177 5.0281966 12.2224335 31.9326019 1624.49685 423.20639
#> 4 5.5434713 2.4060864 0.8276286 10.2593140 407.89693 179.10621
#> 5 46.4405214 5.0106571 36.6198139 56.2612289 3417.16319 427.23184
#> 6 1.1430273 0.7450965 0.0000000 2.6033896 84.10566 54.27639
#> 7 0.3587901 0.2951899 0.0000000 0.9373516 26.40031 21.63337
#> 8 100.0000000 0.0000000 100.0000000 100.0000000 7358.14992 536.14393
#> 32 22.4363077 5.0285302 12.5805696 32.2920459 1650.89716 423.75896
#> 33 77.5636923 5.0285302 67.7079541 87.4194304 5707.25276 460.82638
#> 34 100.0000000 0.0000000 100.0000000 100.0000000 7358.14992 536.14393
#> LCB95Pct.U UCB95Pct.U
#> 1 267.01038 698.34058
#> 2 756.12163 1874.70137
#> 3 795.02756 2453.96614
#> 4 56.85522 758.93864
#> 5 2579.80417 4254.52221
#> 6 0.00000 190.48543
#> 7 0.00000 68.80094
#> 8 6307.32713 8408.97271
#> 32 820.34487 2481.44945
#> 33 4804.04965 6610.45587
#> 34 6307.32713 8408.97271
```

The `write.csv`

function is used to store the extent estimates as a comma-separated value (csv) file. Files in csv format can be read by programs such as Microsoft Excel.

Write results as a comma-separated value (csv) file:

The second analysis that will be examined is estimating resource proportion and size for stream condition variables. Two stream condition variables will be examined: (1) IBI_Status, which classifies streams by IBI (index of biotic integrity) status categories and (2) QHEI_Status, which classifies streams by QHEI (qualitative habitat evaluation index) status categories. The `table`

and `addmargins`

functions are used to create tables displaying the count for each level of the two stream condition variables.

Use the table and addmargins functions to create a table displaying the count for each code of the IBI status variable:

```
cat("\nA table displaying the number of values for each level of the IBI status
variable follows:\n")
#>
#> A table displaying the number of values for each level of the IBI status
#> variable follows:
addmargins(table(IN_streams$IBI_Status))
#>
#> Impaired Not_Impaired Sum
#> 12 36 48
```

Use the table and addmargins functions to create a table displaying the count for each code of the QHEI status variable

```
cat("\nA table displaying the number of values for each level of the QHEI status
variable follows:\n")
#>
#> A table displaying the number of values for each level of the QHEI status
#> variable follows:
addmargins(table(IN_streams$QHEI_Status))
#>
#> Impaired Not_Impaired Sum
#> 14 34 48
```

As for extent estimates, the `cat.analysis`

function will be used to calculate condition estimates. The `sites`

data frame for this analysis differs from the one used to calculate extent estimates. The Use logical variables in `sites`

is set equal to the value “Sampled”, so that only sampled sites are used in the analysis. The `subpop`

and `design`

data frames created in the prior analysis can be reused for this analysis. The `data.cat`

data frame contains the two stream condition variables: IBI_Status and QHEI_Status. Variables IBI_Status and QHEI_Status in the `IN_streams`

data frame are assigned to IBI_Status and QHEI_Status, respectively.

Create the `sites`

data frame

Conduct an analysis of stream condition variables. Create the `sites`

data frame. Note that only sampled sites are used:

Create the `data.cat`

data frame, which specifies the variables to use in the analysis:

```
data.cat <- data.frame(siteID=IN_streams$siteID,
IBI_Status=IN_streams$IBI_Status,
QHEI_Status=IN_streams$QHEI_Status)
```

Use the `cat.analysis`

function to calculate estimates for the stream condition variables:

Print the condition estimates for all basins combined:

```
print(Condition_Estimates[c(1:3, 16:18),])
#> Type Subpopulation Indicator Category NResp Estimate.P
#> 1 Upper_Wabash Upper Wabash IBI_Status Impaired 12 27.66052
#> 2 Upper_Wabash Upper Wabash IBI_Status Not_Impaired 36 72.33948
#> 3 Upper_Wabash Upper Wabash IBI_Status Total 48 100.00000
#> 16 Upper_Wabash Upper Wabash QHEI_Status Impaired 14 40.90216
#> 17 Upper_Wabash Upper Wabash QHEI_Status Not_Impaired 34 59.09784
#> 18 Upper_Wabash Upper Wabash QHEI_Status Total 48 100.00000
#> StdError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U LCB95Pct.U
#> 1 6.611920 14.70139 40.61964 945.205 247.3122 460.4819
#> 2 6.611920 59.38036 85.29861 2471.958 345.9131 1793.9811
#> 3 0.000000 100.00000 100.00000 3417.163 362.5003 2706.6756
#> 16 8.383366 24.47106 57.33325 1397.694 357.9031 696.2163
#> 17 8.383366 42.66675 75.52894 2019.470 305.3225 1421.0486
#> 18 0.000000 100.00000 100.00000 3417.163 362.5003 2706.6756
#> UCB95Pct.U
#> 1 1429.928
#> 2 3149.935
#> 3 4127.651
#> 16 2099.171
#> 17 2617.891
#> 18 4127.651
```

Use the `write.csv`

function to write the condition estimates as a csv file:

The frame is a data structure containing spatial location data in addition to other attributes regarding a resource of interest and is used to create a survey design. A frame often takes the form of a shapefile. The frame can be used to obtain size values (e.g., length of streams) for the populations and subpopulations examined in an analysis. Examination of the Estimates.U column in the `Condition_Estimates`

data frame produced by `cat.analysis`

reveals that the estimated Total value for both condition variables and each combination of population value and subpopulation value does not sum to the corresponding frame size value. For example, the Total entry in the Estimate.U column for the IBI_status variable, population “Upper_Wabash” and subpopulation “Upper Wabash” is 3,417 kilometers(rounded to a whole number). The corresponding frame size value is 7,358 kilometers. The popsize (population size) argument to `cat.analysis`

provides a mechanism for forcing the size estimates to sum to a desired value, e.g., the frame size value. Note that including popsize as an argument results in assigning the popsize value to the Total category of the size estimates. Use of the popsize argument assumes that sites which were evaluated but not sampled were missing at random. The missing at random asumption may not be a valid assumption, e.g., sites for which access was denied by the landowner may not be the same as sites that were sampled. For the current analysis, we will assume that the assumption is valid. As a first step for use of the popsize argument, the `combine`

function is used to create a named vector of frame size values for each basin. Output from the `combine`

function is assigned to an object named `framesize`

. The `popsize`

argument is a list, which is a particular type of R object. The `popsize`

list must include an entry for each population type included in the `subpop`

data frame, i.e., Upper_Wabash and Strahler_Order for this analysis. The sum function applied to `framesize`

is assigned to the Upper_Wabash entry in the `popsize`

list. Recall that the Strahler order population type contains subpopulations, i.e., Strahler order categories. When a population type contains subpopulations, the entry in the `popsize`

list also is a list. The `as.list`

function is applied to `framesize`

, and the result is assigned to the Strahler_Order entry in the `popsize`

list.

Conduct an analysis of stream condition variables correcting for population size. Note that the existing `sites`

, `subpop`

, `design`

, and `data.cont`

data frames can be reused. Assign frame size values:

Use the `cat.analysis`

function to calculate estimates for the stream condition variables:

```
Condition_Estimates_popsize <- cat.analysis(sites, subpop, design, data.cat,
popsize=list(Upper_Wabash=sum(framesize),
Strahler_Order=as.list(framesize)))
```

Print the stream condition estimates for all sites combined:

```
print(Condition_Estimates_popsize[c(1:3, 16:18),])
#> Type Subpopulation Indicator Category NResp Estimate.P
#> 1 Upper_Wabash Upper Wabash IBI_Status Impaired 12 27.66052
#> 2 Upper_Wabash Upper Wabash IBI_Status Not_Impaired 36 72.33948
#> 3 Upper_Wabash Upper Wabash IBI_Status Total 48 100.00000
#> 16 Upper_Wabash Upper Wabash QHEI_Status Impaired 14 40.90216
#> 17 Upper_Wabash Upper Wabash QHEI_Status Not_Impaired 34 59.09784
#> 18 Upper_Wabash Upper Wabash QHEI_Status Total 48 100.00000
#> StdError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U LCB95Pct.U
#> 1 6.611920 14.70139 40.61964 2035.302 486.5150 1081.750
#> 2 6.611920 59.38036 85.29861 5322.848 486.5150 4369.296
#> 3 NA NA NA 7358.150 NA NA
#> 16 8.383366 24.47106 57.33325 3009.642 616.8607 1800.618
#> 17 8.383366 42.66675 75.52894 4348.508 616.8607 3139.483
#> 18 NA NA NA 7358.150 NA NA
#> UCB95Pct.U
#> 1 2988.854
#> 2 6276.400
#> 3 NA
#> 16 4218.667
#> 17 5557.532
#> 18 NA
```

Use the `write.csv`

function to write the condition estimates as a csv file:

The third analysis that will be examined is estimating the CDF and percentiles for quantitative variables. Two quantitative variables will be examined: (1) IBI_Score - IBI score and (2) QHEI_Score - QHEI score. The summary function is used to summarize the data structure of the two quantitative variables.

Use the `summary`

function to summarize the data structure of the IBI score variable:

```
cat("\nSummarize the data structure of the IBI score variable:\n")
#>
#> Summarize the data structure of the IBI score variable:
summary(IN_streams$IBI_Score)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.00 31.50 36.00 36.12 42.00 54.00 52
```

Use the `summary`

function to summarize the data structure of the QHEI score variable:

```
cat("\nSummarize the data structure of the QHEI score variable:\n")
#>
#> Summarize the data structure of the QHEI score variable:
summary(IN_streams$QHEI_Score)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 25.00 47.75 60.00 59.65 71.25 87.00 52
```

The `cont.analysis`

function will be used to calculate estimates for quantitative variables. Input to the `cont.analysis`

function is the same as input for the `cat.analysis`

function except that the data frame containing response variables is named `cont.data`

rather than `cat.data`

. The `sites`

, `subpop`

, and `design`

data frames created in the analysis of stream condition variables can be reused for this analysis. The `data.cont`

data frome contains the two quantitative variables: IBI_Score and QHEI_Score, which contain the numeric scores for the IBI and QHEI variables, respectively. Variables IBI_Score and QHEI_Score in the `IN_streams`

data frame are assigned to IBI_Score and QHEI_Score, respectively. The popsize argument is included in the call to `cont.analysis`

.

Conduct an analysis of quantitative variables. Note that the existing `sites`

, `subpop`

, and `design`

data frames can be reused. Create the `data.cont`

data frame, which specifies the variables to use in the analysis:

```
data.cont <- data.frame(siteID=IN_streams$siteID,
IBI_Score=IN_streams$IBI_Score,
QHEI_Score=IN_streams$QHEI_Score)
```

Use the `cont.analysis`

function to calculate CDF and percentile estimates for the quantitative variables:

```
CDF_Estimates <- cont.analysis(sites, subpop, design, data.cont,
popsize=list(Upper_Wabash=sum(framesize),
Strahler_Order=as.list(framesize)))
```

The object produced by `cont.analysis`

is a list containing two objects: (1) `CDF`

, a data frame containing the CDF estimates and (2) `Pct`

, a data frame containing percentile estimates plus estimates of population values for mean, variance, and standard deviation. Format for the `CDF`

data frame is analogous to the data frame produced by `cat.analysis`

. For the `CDF`

data frame, however, the fourth column is labeled Value and contains the value at which the CDF was evaluated. Unlike the data frames produced by the other analysis functions we have examined, the `Pct`

data frame contains only nine columns since there is a single set of estimates rather than two sets of estimates. In addition, the fourth column is labeled Statistic and identifies either a percentile or the mean, variance, or standard deviation. Finally, since percentile estimates are obtained by inverting the CDF estimate, the percentile estimates do not have a standard error value associated with them.

Use the `write.csv`

function to write the CDF estimates as a csv file:

The `cont.cdfplot`

function in `spsurvey`

can be used to produce a PDF file containing plots of the CDF estimates. The primary arguments to `cont.cdfplot`

are a character string containing a name for the PDF file and the `CDF`

data frame in the `CDF_Estimates`

object.

Produce a PDF file containing plots of the CDF estimates:

Print the percentile estimates for IBI score for all sites combined:

```
print(CDF_Estimates$Pct[1:10,])
#> Type Subpopulation Indicator Statistic NResp Estimate
#> 1 Upper_Wabash Upper Wabash IBI_Score 5Pct 1 0.00000
#> 2 Upper_Wabash Upper Wabash IBI_Score 10Pct 2 23.39923
#> 3 Upper_Wabash Upper Wabash IBI_Score 25Pct 8 28.73106
#> 4 Upper_Wabash Upper Wabash IBI_Score 50Pct 23 34.24697
#> 5 Upper_Wabash Upper Wabash IBI_Score 75Pct 31 39.58683
#> 6 Upper_Wabash Upper Wabash IBI_Score 90Pct 41 44.24131
#> 7 Upper_Wabash Upper Wabash IBI_Score 95Pct 44 48.88966
#> 8 Upper_Wabash Upper Wabash IBI_Score Mean 48 34.19264
#> 9 Upper_Wabash Upper Wabash IBI_Score Variance 48 112.13090
#> 10 Upper_Wabash Upper Wabash IBI_Score Std. Deviation 48 10.58919
#> StdError LCB95Pct UCB95Pct
#> 1 0.000000 24.63962
#> 2 0.000000 26.64929
#> 3 24.221557 32.17595
#> 4 31.384275 37.06088
#> 5 35.911571 43.88564
#> 6 40.800963 51.47035
#> 7 41.691545 54.00000
#> 8 1.7410238506777 30.780300 37.60499
#> 9 45.0419816500115 23.850234 200.41156
#> 10 2.12679116946548 6.420754 14.75762
```

Use the `write.csv`

function to write the percentile estimates as a csv file:

The `cont.cdftest`

function in `spsurvey`

can be used to test for statistical difference between the CDFs from subpopulations. For this analysis we will test for statistical difference between the CDFs for the four Strahler order categories. The `cont.cdftest`

function will test all possible pairs of Strahler order categories. Arguments to `cont.cdftest`

are the same as arguments to `cont.analysis`

. Since we are interested only in testing among Strahler order categories, the `subpop`

data frame is subsetted to include only the siteID and Strahler_Order variables. Note that the popsize argument was modified from prior examples to include only the entry for Strahler_Order.

Test for statistical difference between CDFs for Strahler order categories:

```
CDF_Tests <- cont.cdftest(sites, subpop[,c(1,3)], design, data.cont,
popsize=list(Strahler_Order=as.list(framesize)))
#> During execution of the program, a warning message was generated. The warning
#> message is stored in a data frame named 'warn.df'. Enter the following command
#> to view the warning message: warnprnt()
```

The `print`

function is used to display results for IBI score of the statistical tests for difference between CDFs for Strahler order categories. The object produced by `cont.cdftest`

is a data frame containing eight columns. The first column (Type) identifies the population. The second and third columns (Subpopulation_1 and Subpopulation_2) identify the subpopulations. The fourth column (Indicator) identifies the response variable. Column five contains values of the test statistic. Six test statistics are available, and the default statistic is an F-distribution version of the Wald statistic, which is identified in the data frame as “Wald-F”. The default statistic is used in this analysis. For further information about the test statistics see the help file for the `cdf.test`

function in `spsurvey`

, which includes a reference for the test for differences in CDFs. Columns six and seven (Degrees_of_Freedom_1 and Degrees_of_Freedom_2) provide the numerator and denominator degrees of freedom for the Wald test. The final column (p_Value) provides the p-value for the test.

Print results of the statistical tests for difference between CDFs from Strahler order categories for IBI score:

```
print(CDF_Tests, digits=2)
#> Type Subpopulation_1 Subpopulation_2 Indicator Wald_F
#> 1 Strahler_Order 1st 2nd IBI_Score 0.350
#> 2 Strahler_Order 1st 3rd IBI_Score 0.314
#> 3 Strahler_Order 1st 4th IBI_Score 3.535
#> 4 Strahler_Order 2nd 3rd IBI_Score 0.065
#> 5 Strahler_Order 2nd 4th IBI_Score 3.554
#> 6 Strahler_Order 3rd 4th IBI_Score 2.670
#> 7 Strahler_Order 1st 2nd QHEI_Score 0.989
#> 8 Strahler_Order 1st 3rd QHEI_Score 1.633
#> 9 Strahler_Order 1st 4th QHEI_Score 5.631
#> 10 Strahler_Order 2nd 3rd QHEI_Score 0.406
#> 11 Strahler_Order 2nd 4th QHEI_Score 3.510
#> 12 Strahler_Order 3rd 4th QHEI_Score 1.968
#> Degrees_of_Freedom_1 Degrees_of_Freedom_2 p_Value
#> 1 2 21 0.709
#> 2 2 23 0.733
#> 3 2 17 0.052
#> 4 2 25 0.938
#> 5 2 19 0.049
#> 6 2 21 0.093
#> 7 2 21 0.389
#> 8 2 23 0.217
#> 9 2 17 0.013
#> 10 2 25 0.671
#> 11 2 19 0.050
#> 12 2 21 0.165
```

Use the `write.csv`

function to write CDF test results as a csv file: