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1. Introduction

In classical frequentist statistics, the significance of a relationship or model is determined by
reference to a null distribution for the test statistic. This distribution is derived mathemati-
cally and the probability of achieving a test statistic as large or larger if the null hypothesis
were true is looked-up from this null distribution. In deriving this probability, some assump-
tions about the data or the errors are made. If these assumptions are violated, then the
validity of the derived p-value may be questioned.

An alternative to deriving the null distribution from theory is to generate a null distribution
of the test statistic by randomly shuffling the data in some manner, refitting the model and
deriving values for the test statistic for the permuted data. The level of significance of the test
can be computed as the proportion of values of the test statistic from the null distribution
that are equal to or larger than the observed value.

In many data sets, simply shuffling the data at random is inappropriate; under the null
hypothesis, that data are not freely exchangeable, for example if there is temporal or spatial
correlation, or the samples are clustered in some way, such as multiple samples collected
from each of a number of fields. The permute package was designed to provide facilities for
generating these restricted permutations for use in randomisation tests. permute takes as
its motivation the permutation schemes originally available in Canoco version 3.1 (ter Braak
1990), which employed the cyclic- or toroidal-shifts suggested by Besag and Clifford (1989).

2. Simple randomisation

As an illustration of both randomisation and simple usage of the permute package we consider
a small data set of mandible length measurements on specimens of the golden jackal (Canis
aureus) from the British Museum of Natural History, London, UK. These data were collected
as part of a study comparing prehistoric and modern canids (Higham et al. 1980), and were
analysed by Manly (2007). There are ten measurements of mandible length on both male and
female specimens. The data are available in the jackal data frame supplied with permute.
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R> library("permute")

R> data(jackal)

R> jackal

Length Sex

1 120 Male

2 107 Male

3 110 Male

4 116 Male

5 114 Male

6 111 Male

7 113 Male

8 117 Male

9 114 Male

10 112 Male

11 110 Female

12 111 Female

13 107 Female

14 108 Female

15 110 Female

16 105 Female

17 107 Female

18 106 Female

19 111 Female

20 111 Female

The interest is whether there is a difference in the mean mandible length between male and
female golden jackals. The null hypothesis is that there is zero difference in mandible length
between the two sexes or that females have larger mandibles. The alternative hypothesis is
that males have larger mandibles. The usual statistical test of this hypothesis is a one-sided
t test, which can be applied using t.test()

R> jack.t <- t.test(Length ~ Sex, data = jackal, var.equal = TRUE,

+ alternative = "greater")

R> jack.t

Two Sample t-test

data: Length by Sex

t = 3.4843, df = 18, p-value = 0.001324

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

2.411156 Inf

sample estimates:

mean in group Male mean in group Female

113.4 108.6
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The observed t is 3.484 with 18 df. The probability of observing a value this large or larger if
the null hypothesis were true is 0.0013. Several assumptions have been made in deriving this
p-value, namely

1. random sampling of individuals from the populations of interest,

2. equal population standard deviations for males and females, and

3. that the mandible lengths are normally distributed within the sexes.

Assumption 1 is unlikely to be valid for museum specimens such as these, that have been
collected in some unknown manner. Assumption 2 may be valid, Fisher’s F -test and a Fligner-
Killeen test both suggest that the standard deviations of the two populations do not differ
significantly

R> var.test(Length ~ Sex, data = jackal)

F test to compare two variances

data: Length by Sex

F = 2.681, num df = 9, denom df = 9, p-value = 0.1579

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.665931 10.793829

sample estimates:

ratio of variances

2.681034

R> fligner.test(Length ~ Sex, data = jackal)

Fligner-Killeen test of homogeneity of variances

data: Length by Sex

Fligner-Killeen:med chi-squared = 0.78078, df = 1, p-value = 0.3769

This assumption may be relaxed using var.equal = FALSE (the default) in the call to t.test(),
to employ Welch’s modification for unequal variances. Assumption 3 may be valid, but with
such a small sample we are unable to reliably test this.

A randomisation test of the same hypothesis can be performed by randomly allocating ten
of the mandible lengths to the male group and the remaining lengths to the female group.
This randomisation is justified under the null hypothesis because the observed difference in
mean mandible length between the two sexes is just a typical value for the difference in a
sample if there were no difference in the population. An appropriate test statistic needs to
be selected. We could use the t statistic as derived in the t-test. Alternatively, we could base
our randomisation test on the difference of means Di (male - female).

The main function in permute for providing random permutations is shuffle(). We can
write our own randomisation test for the jackal data by first creating a function to compute
the difference of means for two groups
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R> meanDif <- function(x, grp) {

+ mean(x[grp == "Male"]) - mean(x[grp == "Female"])

+ }

which can be used in a simple for() loop to generate the null distribution for the difference
of means. First, we allocate some storage to hold the null difference of means; here we use
4999 random permutations so allocate a vector of length 5000. Then we iterate, randomly
generating an ordering of the Sex vector and computing the difference of means for that
permutation.

R> Djackal <- numeric(length = 5000)

R> N <- nrow(jackal)

R> set.seed(42)

R> for(i in seq_len(length(Djackal) - 1)) {

+ perm <- shuffle(N)

+ Djackal[i] <- with(jackal, meanDif(Length, Sex[perm]))

+ }

R> Djackal[5000] <- with(jackal, meanDif(Length, Sex))

The observed difference of means was added to the null distribution, because under the null
hypothesis the observed allocation of mandible lengths to male and female jackals is just one
of the possible random allocations.

The null distribution of Di can be visualised using a histogram, as shown in Figure 1. The
observed difference of means (4.8) is indicated by the red tick mark.

R> hist(Djackal, main = "",

+ xlab = expression("Mean difference (Male - Female) in mm"))

R> rug(Djackal[5000], col = "red", lwd = 2)

The number of values in the randomisation distribution equal to or larger than the observed
difference is

R> (Dbig <- sum(Djackal >= Djackal[5000]))

[1] 12

giving a permutational p-value of

R> Dbig / length(Djackal)

[1] 0.0024

which is comparable with that determined from the frequentist t-test, and indicates strong
evidence against the null hypothesis of no difference.

In total there 20C10 = 184, 756 possible allocations of the 20 observations to two groups of
ten
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Figure 1: Distribution of the difference of mean mandible length in random allocations, ten
to each sex.

R> choose(20, 10)

[1] 184756

so we have only evaluated a small proportion of these in the randomisation test.

The main workhorse function we used above was shuffle(). In this example, we could have
used the base R function sample() to generate the randomised indices perm that were used to
permute the Sex factor. Where shuffle() comes into it’s own is for generating permutation
indices from restricted permutation designs.

3. The shuffle() and shuffleSet() functions

In the previous section I introduced the shuffle() function to generate permutation indices
for use in a randomisation test. Now we will take a closer look at shuffle() and explore the
various restricted permutation designs from which it can generate permutation indices.
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shuffle() has two arguments: i) n, the number of observations in the data set to be permuted,
and ii) control, a list that defines the permutation design describing how the samples should
be permuted.

R> args(shuffle)

function (n, control = how())

NULL

A series of convenience functions are provided that allow the user to set-up even quite complex
permutation designs with little effort. The user only needs to specify the aspects of the design
they require and the convenience functions ensure all configuration choices are set and passed
on to shuffle(). The main convenience function is how(), which returns a list specifying all
the options available for controlling the sorts of permutations returned by shuffle().

R> str(how())

List of 12

$ within :List of 6

..$ type : chr "free"

..$ constant: logi FALSE

..$ mirror : logi FALSE

..$ ncol : NULL

..$ nrow : NULL

..$ call : language Within()

..- attr(*, "class")= chr "Within"

$ plots :List of 7

..$ strata : NULL

..$ type : chr "none"

..$ mirror : logi FALSE

..$ ncol : NULL

..$ nrow : NULL

..$ plots.name: chr "NULL"

..$ call : language Plots()

..- attr(*, "class")= chr "Plots"

$ blocks : NULL

$ nperm : num 199

$ complete : logi FALSE

$ maxperm : num 9999

$ minperm : num 5040

$ all.perms : NULL

$ make : logi TRUE

$ observed : logi FALSE

$ blocks.name: chr "NULL"

$ call : language how()

- attr(*, "class")= chr "how"
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The defaults describe a random permutation design where all objects are freely exchangeable.
Using these defaults, shuffle(10) amounts to sample(1:10, 10, replace = FALSE):

R> set.seed(2)

R> (r1 <- shuffle(10))

[1] 2 7 5 10 6 8 1 3 4 9

R> set.seed(2)

R> (r2 <- sample(1:10, 10, replace = FALSE))

[1] 2 7 5 10 6 8 1 3 4 9

R> all.equal(r1, r2)

[1] TRUE

3.1. Generating restricted permutations

Several types of permutation are available in permute:

• Free permutation of objects

• Time series or line transect designs, where the temporal or spatial ordering is preserved.

• Spatial grid designs, where the spatial ordering is preserved in both coordinate directions

• Permutation of plots or groups of samples.

• Blocking factors which restrict permutations to within blocks. The preceding designs
can be nested within blocks.

The first three of these can be nested within the levels of a factor or to the levels of that
factor, or to both. Such flexibility allows the analysis of split-plot designs using permutation
tests, especially when combined with blocks.

how() is used to set up the design from which shuffle() will draw a permutation. how()

has two main arguments that specify how samples are permuted within plots of samples or
at the plot level itself. These are within and plots. Two convenience functions, Within()
and Plots() can be used to set the various options for permutation. Blocks operate at the
uppermost level of this hierarchy; blocks define groups of plots, each of which may contain
groups of samples.

For example, to permute the observations 1:10 assuming a time series design for the entire
set of observations, the following control object would be used

R> set.seed(4)

R> x <- 1:10

R> CTRL <- how(within = Within(type = "series"))

R> perm <- shuffle(10, control = CTRL)

R> perm
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[1] 7 8 9 10 1 2 3 4 5 6

R> x[perm] ## equivalent

[1] 7 8 9 10 1 2 3 4 5 6

It is assumed that the observations are in temporal or transect order. We only specified
the type of permutation within plots, the remaining options were set to their defaults via
Within().

A more complex design, with three plots, and a 3 by 3 spatial grid arrangement within each
plot can be created as follows

R> set.seed(4)

R> plt <- gl(3, 9)

R> CTRL <- how(within = Within(type = "grid", ncol = 3, nrow = 3),

+ plots = Plots(strata = plt))

R> perm <- shuffle(length(plt), control = CTRL)

R> perm

[1] 6 4 5 9 7 8 3 1 2 14 15 13 17 18 16 11 12 10 22 23 24 25 26 27 19

[26] 20 21

Visualising the permutation as the 3 matrices may help illustrate how the data have been
shuffled

R> ## Original

R> lapply(split(seq_along(plt), plt), matrix, ncol = 3)

$`1`
[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

$`2`
[,1] [,2] [,3]

[1,] 10 13 16

[2,] 11 14 17

[3,] 12 15 18

$`3`
[,1] [,2] [,3]

[1,] 19 22 25

[2,] 20 23 26

[3,] 21 24 27
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R> ## Shuffled

R> lapply(split(perm, plt), matrix, ncol = 3)

$`1`
[,1] [,2] [,3]

[1,] 6 9 3

[2,] 4 7 1

[3,] 5 8 2

$`2`
[,1] [,2] [,3]

[1,] 14 17 11

[2,] 15 18 12

[3,] 13 16 10

$`3`
[,1] [,2] [,3]

[1,] 22 25 19

[2,] 23 26 20

[3,] 24 27 21

In the first grid, the lower-left corner of the grid was set to row 2 and column 2 of the original,
to row 1 and column 2 in the second grid, and to row 3 column 2 in the third grid.

To have the same permutation within each level of plt, use the constant argument of the
Within() function, setting it to TRUE

R> set.seed(4)

R> CTRL <- how(within = Within(type = "grid", ncol = 3, nrow = 3,

+ constant = TRUE),

+ plots = Plots(strata = plt))

R> perm2 <- shuffle(length(plt), control = CTRL)

R> lapply(split(perm2, plt), matrix, ncol = 3)

$`1`
[,1] [,2] [,3]

[1,] 6 9 3

[2,] 4 7 1

[3,] 5 8 2

$`2`
[,1] [,2] [,3]

[1,] 15 18 12

[2,] 13 16 10

[3,] 14 17 11

$`3`
[,1] [,2] [,3]
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[1,] 24 27 21

[2,] 22 25 19

[3,] 23 26 20

3.2. Generating sets of permutations with shuffleSet()

There are several reasons why one might wish to generate a set of n permutations instead
of repeatedly generating permutations one at a time. Interpreting the permutation design
happens each time shuffle() is called. This is an unnecessary computational burden, espe-
cially if you want to perform tests with large numbers of permutations. Furthermore, having
the set of permutations available allows for expedited use with other functions, they can be
iterated over using for loops or the apply family of functions, and the set of permutations
can be exported for use outside of R.

The shuffleSet() function allows the generation of sets of permutations from any of the de-
signs available in permute. shuffleSet() takes an additional argument to that of shuffle(),
nset, which is the number of permutations required for the set. nset can be missing, in which
case the number of permutations in the set is looked for in the object passed to control; using
this, the desired number of permutations can be set at the time the design is created via the
nperm argument of how(). For example,

R> how(nperm = 10, within = Within(type = "series"))

Internally, shuffle() and shuffleSet() are very similar, with the major difference being
that shuffleSet() arranges repeated calls to the workhorse permutation-generating func-
tions, only incurring the overhead associated with interpreting the permutation design once.
shuffleSet() returns a matrix where the rows represent different permutations in the set.

As an illustration, consider again the simple time series example from earlier. Here I generate
a set of 5 permutations from the design, with the results returned as a matrix

R> set.seed(4)

R> CTRL <- how(within = Within(type = "series"))

R> pset <- shuffleSet(10, nset = 5, control = CTRL)

R> pset

No. of Permutations: 5

No. of Samples: 10 (Sequence)

1 2 3 4 5 6 7 8 9 10

p1 7 8 9 10 1 2 3 4 5 6

p2 2 3 4 5 6 7 8 9 10 1

p3 4 5 6 7 8 9 10 1 2 3

p4 3 4 5 6 7 8 9 10 1 2

p5 6 7 8 9 10 1 2 3 4 5

It is worth taking a moment to explain what has happened here, behind the scenes. There are
only 10 unique orderings (including the observed) in the set of permutations for this design.
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Such a small set of permutations triggers1 the generation of the entire set of permutations.
From this set, shuffleSet() samples at random nset permutations. Hence the same number
of random values has been generated via the pseudo-random number generator in R but we
ensure a set of unique permutations is drawn, rather than randomly sample from a small set.

4. Defining permutation designs

In this section I give examples how various permutation designs can be specified using how().
It is not the intention to provide exhaustive coverage of all possible designs that can be
produced; such a list would be tedious to both write and read. Instead, the main features
and options will be described through a series of examples. The reader should then be able
to put together the various options to create the exact structure required.

4.1. Set the number of permutations

It may be useful to specify the number of permutations required in a permutation test along-
side the permutation design. This is done via the nperm argument, as seen earlier. If nothing
else is specified

R> how(nperm = 999)

would indicate 999 random permutations where the samples are all freely exchangeable.

One advantage of using nperm is that shuffleSet() will use this if the nset argument is not
specified. Additionally, shuffleSet() will check to see if the desired number of permutations
is possible given the data and the requested design. This is done via the function check(),
which is discussed later.

4.2. The levels of the permutation hierarchy

There are three levels at which permutations can be controlled in permute. The highest level
of the hierarchy is the block level. Blocks are defined by a factor variable. Blocks restrict
permutation of samples to within the levels of this factor; samples are never swapped between
blocks.

The plot level sits below blocks. Plots are defined by a factor and group samples in the same
way as blocks. As such, some permutation designs can be initiated using a factor at the plot
level or the same factor at the block level. The major difference between blocks and plots is
that plots can also be permuted, whereas blocks are never permuted.

The lowest level of a permutation design in the permute hierarchy is known as within, and
refers to samples nested within plots. If there are no plots or blocks, how samples are permuted
at the within level applies to the entire data set.

Permuting samples at the lowest level

How samples at the within level are permuted is configured using the Within() function. It
takes the following arguments

1The trigger is via the utility function check(), which calls another utility function, allPerms(), to generate
the set of permutations for the stated design. The trigger for complete enumeration is set via how() using
argument minperm; below this value, by default check() will generate the entire set of permutations.
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function (type = c("free", "series", "grid", "none"), constant = FALSE,

mirror = FALSE, ncol = NULL, nrow = NULL)

NULL

type controls how the samples at the lowest level are permuted. The default is to form unre-
stricted permutations via option "type". Options "series" and "grid" form restricted
permutations via cyclic or toroidal shifts, respectively. The former is useful for samples
that are a time series or line-transect, whilst the latter is used for samples on a regular
spatial grid. The final option, "none", will result in the samples at the lowest level not
being permuted at all. This option is only of practical use when there are plots within
the permutation/experimental design2.

constant this argument only has an effect when there are plots in the design3. constant =

TRUE stipulates that each plot should have the same within-plot permutation. This is
useful for example when you have time series of observations from several plots. If all
plots were sampled at the same time points, it can be argued that at the plot level, the
samples experienced the same time and hence the same permutation should be used
within each plot.

mirror when type is "series" or "grid", argument "mirror" controls whether permuta-
tions are taken from the mirror image of the observed ordering in space or time. Consider
the sequence 1, 2, 3, 4. The relationship between observations is also preserved if we
reverse the original ordering to 4, 3, 2, 1 and generate permutations from both these
orderings. This is what happens when mirror = TRUE. For time series, the reversed
ordering 4, 3, 2, 1 would imply an influence of observation 4 on observation 3, which
is implausible. For spatial grids or line transects, however, this is a sensible option, and
can significantly increase the number of possible permutations4.

ncol, nrow define the dimensions of the spatial grid.

How Within() is used has already been encountered in earlier sections of this vignette; the
function is used to supply a value to the within argument of how(). You may have noticed
that all the arguments of Within() have default values? This means that the user need only
supply a modified value for the arguments they wish to change. Also, arguments that are not
relevant for the type of permutation stated are simply ignored; nrow and ncol, for example,
could be set to any value without affecting the permutation design if type != "grid"5.

Permuting samples at the Plot level

Permutation of samples at the plot level is configured via the Plots() function. As with
Within(), Plots() is supplied to the plots argument of how(). Plots() takes many of

2As blocks are never permuted, using type = "none" at the within level is also of no practical use.
3Owing to the current implementation, whilst this option could also be useful when blocks to define groups

of samples, it will not have any influence over how permutations are generated. As such, only use blocks for
simple blocking structures and use plots if you require greater control of the permutations at the group (i.e.
plot) level.

4Setting mirror = TRUE will double or quadruple the set of permutations for "series" or "grid" permu-
tations, respectively, as long as there are more than two time points or columns in the grid.

5No warnings are currently given if incompatible arguments are specified; they are ignored, but may show
up in the printed output. This infelicity will be removed prior to permute version 1.0-0 being released.
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the same arguments as Within(), the two differences being strata, a factor variable that
describes the grouping of samples at the plot level, and the absence of a constant argument.
As the majority of arguments are similar between Within() and Plots(), I will not repeat
the details again, and only describe the strata argument

strata a factor variable. strata describes the grouping of samples at the plot level, where
samples from the same plot are take the same level of the factor.

When a plot-level design is specified, samples are never permuted between plots, only within
plots if they are permuted at all. Hence, the type of permutation within the plots is controlled
by Within(). Note also that with Plots(), the way the individual plots are permuted can be
from any one of the four basic permutation types; "none", "free", "series", and "grid",
as described above. To permute the plots only (i.e. retain the ordering of the samples within
plots), you also need to specify Within(type = "none", ...) as the default in Within() is
type = "free". The ability to permute the plots whilst preserving the within-plot ordering is
an impotant feature in testing explanatory factors at the whole-plot level in split-plot designs
and in multifactorial analysis of variance (ter Braak and Šmilauer 2012).

Specifying blocks; the top of the permute hierarchy

In constrast to the within and plots levels, the blocks level is simple to specify; all that is
required is an indicator variable the same length as the data. Usually this is a factor, but
how() will take anything that can be coerced to a factor via as.factor().

It is worth repeating what the role of the block-level structure is; blocks simply restrict
permutation to within, and never between, blocks, and blocks are never permuted. This is
reflected in the implementation; the split-apply-combine paradigm is used to split on the
blocking factor, the plot- and within-level permutation design is applied separately to each
block, and finally the sets of permutations for each block are recombined.

4.3. Examples

To do.

5. Using permute in R functions

permute originally started life as a set of functions contained within the vegan package (Oksa-
nen et al. 2013) designed to provide a replacement for the permuted.index() function. From
these humble origins, I realised other users and package authors might want to make use of
the code I was writing and so Jari oksanen, the maintainer of vegan, and I decided to spin off
the code into the permute package. Hence from the very beginning, permute was intended
for use both by users, to defining permutation designs, and by package authors, with which
to implement permutation tests within their packages.

In the previous sections, I described the various user-facing functions that are employed to
set up permutation designs and generate permutations from these. Here I will outline how
package authors can use functionality in the permute package to implement permutation tests.

In Section 2 I showed how a permutation test function could be written using the shuffle()

function and allowing the user to pass into the test function an object created with how().
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As mentioned earlier, it is more efficient to generate a set of permutations via a call to
shuffleSet() than to repeatedly call shuffle() and large number of times. Another advan-
tage of using shuffleSet() is that once the set of permutations has been created, parallel
processing can be used to break the set of permutations down into smaller chunks, each of
which can be worked on simultaneously. As a result, package authors are encouraged to use
shuffleSet() instead of the simpler shuffle().

To illustrate how to use permute in R functions, I’ll rework the permutation test I used for
the jackal data earlier in Section 2.

pt.test <- function(x, group, nperm = 199) {

## mean difference function

meanDif <- function(i, x, grp) {

grp <- grp[i]

mean(x[grp == "Male"]) - mean(x[grp == "Female"])

}

## check x and group are of same length

stopifnot(all.equal(length(x), length(group)))

## number of observations

N <- nobs(x)

## generate the required set of permutations

pset <- shuffleSet(N, nset = nperm)

## iterate over the set of permutations applying meanDif

D <- apply(pset, 1, meanDif, x = x, grp = group)

## add on the observed mean difference

D <- c(meanDif(seq_len(N), x, group), D)

## compute & return the p-value

Ds <- sum(D >= D[1]) # how many >= to the observed diff?

Ds / (nperm + 1) # what proportion of perms is this (the pval)?

}

The commented function should be reasonably self explanatory. I’ve altered the in-line version
of the meanDif() function to take a vector of permutation indices i as the first argument,
and internally the grp vector is permuted according to i. The other major change is that
shuffleSet() is used to generate a set of permutations, which are then iterated over using
apply().

In use we see

R> set.seed(42) ## same seed as earlier

R> pval <- with(jackal, pt.test(Length, Sex, nperm = 4999))

R> pval

[1] 0.0024

which nicely agrees with the test we did earlier by hand.

Iterating over a set of permutation indices also means that adding parallel processing of the
permutations requires only trivial changes to the main function code. As an illustration,
below I show a parallel version of pt.test()
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ppt.test <- function(x, group, nperm = 199, cores = 2) {

## mean difference function

meanDif <- function(i, .x, .grp) {

.grp <- .grp[i]

mean(.x[.grp == "Male"]) - mean(.x[.grp == "Female"])

}

## check x and group are of same length

stopifnot(all.equal(length(x), length(group)))

## number of observations

N <- nobs(x)

## generate the required set of permutations

pset <- shuffleSet(N, nset = nperm)

if (cores > 1) {

## initiate a cluster

cl <- makeCluster(cores)

on.exit(stopCluster(cl = cl))

## iterate over the set of permutations applying meanDif

D <- parRapply(cl, pset, meanDif, .x = x, .grp = group)

} else {

D <- apply(pset, 1, meanDif, .x = x, .grp = group)

}

## add on the observed mean difference

D <- c(meanDif(seq_len(N), x, group), D)

## compute & return the p-value

Ds <- sum(D >= D[1]) # how many >= to the observed diff?

Ds / (nperm + 1) # what proportion of perms is this (the pval)?

}

In use we observe

R> require("parallel")

R> set.seed(42)

R> system.time(ppval <- ppt.test(jackal$Length, jackal$Sex, nperm = 9999,

+ cores = 2))

user system elapsed

0.308 0.020 1.435

R> ppval

[1] 0.002

In this case there is little to be gained by splitting the computations over two CPU cores

R> set.seed(42)

R> system.time(ppval2 <- ppt.test(jackal$Length, jackal$Sex, nperm = 9999,

+ cores = 1))
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user system elapsed

1.669 0.004 1.684

R> ppval2

[1] 0.002

The cost of setting up and managing the parallel processes, and recombining the separate
sets of results almost negates the gain in running the permutations in parallel. Here, the
computations involved in meanDif() are trivial and we would expect greater efficiencies from
running the permutations in parallel for more complex analyses.

5.1. Accesing and changing permutation designs

Th object created by how() is a relatively simple list containing the settings for the specified
permutation design. As such one could use the standard subsetting and replacement functions
in base R to alter components of the list. This is not recommended, however, as the internal
structure of the list returned by how() may change in a later version of permute. Furthermore,
to facilitate the use of update() at the user-level to alter the permutation design in a user-
friendly way, the matched how() call is stored within the list along with the matched calls for
any Within() or Plots() components. These matched calls need to be updated too if the
list describing the permutation design is altered. To allow function writers to access and alter
permutation designs, permute provides a series of extractor and replacement functions that
have the forms getFoo() and setFoo<-(), respectively,where Foo is replaced by a particular
component to be extracted or replaced.

The getFoo() functions provided by permute are

getWithin(), getPlots(), getBlocks() these extract the details of the within-, plots-, and
blocks-level components of the design. Given the current design (as of permute version
0.8-0), the first two of these return lists with classes "Within" and "Plots", respectively,
whilst getBlocks() returns the block-level factor.

getStrata() returns the factor describing the grouping of samples at the plots or blocks
levels, as determined by the value of argument which.

getType() returns the type of permutation of samples at the within or plots levels, as deter-
mined by the value of argument which.

getMirror() returns a logical, indicating whether permutations are drawn from the mirror
image of the observed ordering at the within or plots levels, as determined by the value
of argument which.

getConstant() returns a logical, indicating whether the same permutation of samples, or a
different permutation, is used within each of the plots.

getRow(), getCol(), getDim() return dimensions of the spatial grid of samples at the plots
or blocks levels, as determined by the value of argument which.
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getNperm(), getMaxperm(), getMinperm() return numerics for the stored number of permu-
tations requested plus two triggers used when checking permutation designs via check().

getComplete() returns a logical, indicating whether complete enumeration of the set of per-
mutations was requested.

getMake() returns a logical, indicating whether the entire set of permutations should be
produced or not.

getObserved() returns a logical, which indicates whether the observed permutation (ordering
of samples) is included in the entire set of permutation generated by allPerms().

getAllperms() extracts the complete set of permutations if present. Returns NULL if the set
has not been generated.

The available setFoo()<- functions are

setPlots<-(), setWithin<-(); replaces the details of the within-, and plots-, components
of the design. The replacement object must be of class "Plots" or "Within", respec-
tively, and hence is most usefully used in combination with the Plots() or Within()

constructor functions.

setBlocks<-(); replaces the factor that partitions the observations into blocks. value can
be any R object that can be coerced to a factor vector via as.factor().

setStrata<-(); replaces either the blocks or strata components of the design, depending
on what class of object setStrata<-() is applied to. When used on an object of class
"how", setStrata<-() replaces the blocks component of that object. When used on an
object of class "Plots", setStrata<-() replaces the strata component of that object.
In both cases a factor variable is required and the replacement object will be coerced to
a factor via as.factor() if possible.

setType<-(); replaces the type component of an object of class "Plots" or "Within" with
a character vector of length one. Must be one of the available types: "none", "free",
"series", or "grid".

setMirror<-(); replaces the mirror component of an object of class "Plots" or "Within"

with a logical vector of length one.

setConstant<-(); replaces the constant component of an object of class "Within" with a
logical vector of length one.

setRow<-(), setCol<-(), setDim<-(); replace one or both of the spatial grid dimensions of
an object of class "Plots" or "Within" with am integer vector of length one, or, in the
case of setDim<-(), of length 2.

setNperm<-(), setMinperm<-(), setMaxperm<-(); update the stored values for the requested
number of permutations and the minimum and maximum permutation thresholds that
control whether the entire set of permutations is generated instead of nperm permuta-
tions.
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setAllperms<-(); assigns a matrix of permutation indices to the all.perms component of
the design list object.

setComplete<-(); updates the status of the complete setting. Takes a logical vector of
length 1 or any object coercible to such.

setMake<-(); sets the indicator controlling whether the entrie set of permutations is gener-
ated during checking of the design via check(). Takes a logical vector of length 1 or
any object coercible to such.

setObserved<-(); updates the indicator of whether the observed ordering is included in the
set of all permutations should they be generated. Takes a logical vector of length 1 or
any object coercible to such.

Examples

I illustrate the behaviour of the getFoo() and setFoo<-() functions through a couple of
simple examples. Firstly, generate a design object

R> hh <- how()

This design is one of complete randomization, so all of the settings in the object take their
default values. The default number of permutations is currently 199, and can be extracted
using getNperm()

R> getNperm(hh)

[1] 199

The corresponding replacement function can be use to alter the number of permutations after
the design has been generated. To illustrate a finer point of the behaviour of these replacement
functions, compare the matched call stored in hh before and after the number of permutations
is changed

R> getCall(hh)

how()

R> setNperm(hh) <- 999

R> getNperm(hh)

[1] 999

R> getCall(hh)

how(nperm = 999)
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Note how the call component has been altered to include the argument pair nperm = 999,
hence if this call were evaluated, the resulting object would be a copy of hh.

As a more complex example, consider the following design consisting of 5 blocks, each con-
taining 2 plots of 5 samples each. Hence there are a total of 10 plots. Both the plots and
within-plot sample are time series. This design can be created using

R> hh <- how(within = Within(type = "series"),

+ plots = Plots(type = "series", strata = gl(10, 5)),

+ blocks = gl(5, 10))

To alter the design at the plot or within-plot levels, it is convenient to extract the relevant
component using getPlots() or getWithin(), update the extracted object, and finally use
the updated object to update hh. This process is illustrated below in order to change the
plot-level permutation type to "free"

R> pl <- getPlots(hh)

R> setType(pl) <- "free"

R> setPlots(hh) <- pl

We can confirm this has been changed by extracting the permutation type for the plot level

R> getType(hh, which = "plots")

[1] "free"

Notice too how the call has been expanded from gl(10, 5) to an integer vector. This
expansion is to avoid the obvious problem of locating the objects referred to in the call should
the call be re-evaluated later.

R> getCall(getPlots(hh))

Plots(strata = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L,

3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,

6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L,

9L, 9L, 10L, 10L, 10L, 10L, 10L), type = "free")

At the top level, a user can update the design using update(). Hence the equivalent of the
above update is (this time resetting the original type; type = "series")

R> hh <- update(hh, plots = update(getPlots(hh), type = "series"))

R> getType(hh, which = "plots")

[1] "series"

However, this approach is not assured of working within a function because we do not guar-
antee that components of the call used to create hh can be found from the execution frame
where update() is called. To be safe, always use the setFoo<-() replacement functions to
update design objects from within your functions.
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Computational details

This vignette was built within the following environment:

• R version 3.5.3 beta (2019-02-28 r76174), x86_64-pc-linux-gnu

• Running under: Fedora 26 (Workstation Edition)

• Matrix products: default

• BLAS: /home/gavin/R/build/3.5-patched/lib/libRblas.so

• LAPACK: /home/gavin/R/build/3.5-patched/lib/libRlapack.so

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

• Other packages: permute 0.9-5

• Loaded via a namespace (and not attached): compiler 3.5.3, tools 3.5.3
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