
Package ‘rcaiman’
September 20, 2022

Type Package

Title CAnopy IMage ANalysis

Version 1.0.8

Date 2022-09-19

Description Classify hemispherical
photographs of the plant canopy with algorithms specially developed for
such a task and well documented in
Díaz and Lencinas (2015) <doi:10.1109/lgrs.2015.2425931> and
Díaz and Lencinas (2018) <doi:10.1139/cjfr-2018-0006>. It supports
non-circular hemispherical photography, such as those acquired with
15 mm lenses or with auxiliary fish-eye lenses attached to mobile devices.
Most of the functions also support restricted view photography.

License GPL-3

BugReports https://github.com/GastonMauroDiaz/rcaiman/issues

Encoding UTF-8

RoxygenNote 7.2.1

Depends filenamer, magrittr, colorspace, terra

Imports methods, testthat, pracma, stats, utils, Rdpack, spatial, lidR

Suggests autothresholdr, conicfit, EBImage, bbmle, imager

RdMacros Rdpack

NeedsCompilation no

Author Gastón Mauro Díaz [aut, cre] (<https://orcid.org/0000-0002-0362-8616>)

Maintainer Gastón Mauro Díaz <gastonmaurodiaz@gmail.com>

Repository CRAN

Date/Publication 2022-09-19 22:56:05 UTC

R topics documented:
apply_thr . 3
azimuth_image . 4

1

https://doi.org/10.1109/lgrs.2015.2425931
https://doi.org/10.1139/cjfr-2018-0006
https://github.com/GastonMauroDiaz/rcaiman/issues
https://orcid.org/0000-0002-0362-8616

2 R topics documented:

calc_diameter . 5
calc_zenith_raster_coord . 6
calibrate_lens . 8
chessboard . 9
cie_sky_model_raster . 10
colorfulness . 11
defuzzify . 12
enhance_caim . 13
expand_noncircular . 17
extract_dn . 18
extract_feature . 19
extract_rl . 21
extract_sky_points . 22
extract_sun_coord . 24
find_sky_pixels . 25
find_sky_pixels_nonnull . 26
fisheye_to_equidistant . 28
fisheye_to_pano . 29
fit_cie_sky_model . 30
fit_coneshaped_model . 34
fit_trend_surface . 35
fix_reconstructed_sky . 37
gbc . 38
interpolate_sky_points . 39
lens . 41
local_fuzzy_thresholding . 42
masking . 44
mask_hs . 45
mask_sunlit_canopy . 46
membership_to_color . 47
normalize . 48
obia . 49
ootb_mblt . 50
ootb_obia . 52
ootb_sky_reconstruction . 54
polar_qtree . 56
qtree . 58
rcaiman . 59
read_bin . 60
read_caim . 61
read_manual_input . 62
read_opt_sky_coef . 63
regional_thresholding . 64
rings_segmentation . 65
row_col_from_zenith_azimuth . 66
sectors_segmentation . 67
sky_grid_segmentation . 67
test_lens_coef . 69

apply_thr 3

thr_image . 69
thr_isodata . 71
write_bin . 72
write_caim . 73
write_sky_points . 73
write_sun_coord . 75
zenith_azimuth_from_row_col . 76
zenith_image . 76

Index 78

apply_thr Apply threshold

Description

Global or local thresholding of images.

Usage

apply_thr(r, thr)

Arguments

r SpatRaster. A greyscale image.

thr Numeric vector of length one or SpatRaster. Threshold.

Details

It is a wrapper function around the operator > from the ‘terra’ package. If a single threshold value
is provided as the thr argument, it is applied to every pixel of the object r. If, instead, a SpatRaster
is provided as the thr argument, then a particular threshold is applied to each particular pixel.

Value

An object of class SpatRaster with values 0 and 1.

See Also

Other Binarization Functions: find_sky_pixels_nonnull(), find_sky_pixels(), obia(), ootb_mblt(),
ootb_obia(), regional_thresholding(), thr_image(), thr_isodata()

4 azimuth_image

Examples

r <- read_caim()
apply_thr(r$Blue, thr_isodata(r$Blue[]))
Not run:
This function is useful in combination with the ‘autothresholdr’
package. For example:
require(autothresholdr)
thr <- auto_thresh(r$Blue[], "IsoData")[1]
bin <- apply_thr(r$Blue, thr)
plot(bin)

End(Not run)

azimuth_image Azimuth image

Description

Build a single layer image with azimuth angles as pixel values.

Usage

azimuth_image(z, orientation = 0)

Arguments

z SpatRaster built with zenith_image.

orientation The azimuthal angle at which the top of the image is facing, in degrees. Gener-
ally, it corresponds to the angle at which the top of the camera was facing at the
moment of acquisition.

Value

An object of class SpatRaster with azimuth angles in degrees. If the orientation argument is zero,
North (0º) is pointing up as in maps, but East (90º) and West (270º) are flipped respecting to maps.
To understand why is that, do the following: take two flash-card size pieces of paper; put one on
a table in front of you and draw on it a compass rose; take the other and hold it with your arms
extended over your head and, following the directions of the compass rose in front of you, draw
another one in the paper side that face down–It will be an awkward position, like if you were taking
an upward-looking photo with a mobile device while looking at the screen–; finally, put it down and
compare both compass roses.

See Also

Other Lens Functions: calc_diameter(), calc_zenith_raster_coord(), calibrate_lens(),
expand_noncircular(), fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(),
zenith_image()

calc_diameter 5

Examples

z <- zenith_image(1490, lens("Nikon_FCE9"))
a <- azimuth_image(z)
plot(a)
Not run:
a <- azimuth_image(z, 45)
plot(a)

End(Not run)

calc_diameter Calculate diameter

Description

Calculate the diameter in pixels of a 180º fisheye image.

Usage

calc_diameter(lens_coef, radius_px, angle)

Arguments

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

radius_px Numeric vector. Distance in pixels from the zenith.

angle Numeric vector. Zenith angle in degrees.

Details

This function helps handle devices with a field of view different than 180 degrees. Given a lens
projection function and data points consisting of radii (pixels) and their correspondent zenith angle
(θ), it returns the radius of the horizon (i.e., the radius for θ equal to 90 degrees).

When working with non-circular hemispherical photography, this function will help to find the
diameter that a circular image would have if the equipment would record the whole hemisphere.

The required data (radius-angle data) can be obtained following the instructions given in the user
manual of Hemisfer software. The following is a slightly simpler alternative:

• Find a vertical wall and a leveled floor, both well-constructed. For instance, a parking lot.

• Draw a triangle of 5× 4× 3 meters on the floor, with the 4-meter side over the wall.

• Locate the camera over the vertex that is 3 meters away from the wall. Place it at a given
height above the floor, 1.3 meters for instance.

• Make a mark on the wall at chosen height over the wall-vertex nearest to the camera-vertex.
Make four more marks with one meter of spacing and following a horizontal line. This will
create marks for 0º, 18º, 34º, 45º, and 54º θ.

• Before taking the photograph, do not forget to align the zenith coordinates with the 0º θ mark
and check if the optical axis is leveled.

https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm
https://www.schleppi.ch/patrick/hemisfer/help/en/lens.htm

6 calc_zenith_raster_coord

The line selection tool of ImageJ can be used to measure the distance in pixels between points on
the image. Draw a line, and use the dropdown menu Analyze>Measure to obtain its length.

For obtaining the projection of a new lens, refer to calibrate_lens.

Value

Numeric vector of length one. Diameter adjusted to a whole number (see zenith_image for details
about that constrain).

See Also

Other Lens Functions: azimuth_image(), calc_zenith_raster_coord(), calibrate_lens(),
expand_noncircular(), fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(),
zenith_image()

Examples

Nikon D50 and Fisheye Nikkor 10.5 mm lens
calc_diameter(lens("Nikkor_10.5_mm"), 1202, 54)

calc_zenith_raster_coord

Calculate zenith raster coordinates

Description

Calculate zenith raster coordinates from points digitized with the open-source software package
‘ImageJ’. The zenith is the point on the image that represents the zenith when upward-looking
photographs are taken with the optical axis parallel to the vertical line.

Usage

calc_zenith_raster_coord(path_to_csv)

calc_zenith_raster_coordinates(path_to_csv)

Arguments

path_to_csv Character vector of length one. Path to a CSV file created with the point selec-
tion tool of ‘ImageJ’ software.

https://imagej.nih.gov/ij/docs/guide/146-19.html#toc-Subsection-19.2
https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool

calc_zenith_raster_coord 7

Details

The technique described under the headline ‘Optical center characterization’ of the user manual of
the software Can-Eye can be used to acquire the data for determining the zenith coordinates. This
technique was used by Pekin and Macfarlane (2009), among others. Briefly, it consists in drilling
a small hole in the cap of the fisheye lens (it must be away from the center of the cap), and taking
about ten photographs without removing the cap. The cap must be rotated about 30º before taking
each photograph. The method implemented here does not support multiple holes.

The point selection tool of ‘ImageJ’ software should be used to manually digitize the white dots and
create a CSV file to feed this function. After digitizing the points on the image, use the dropdown
menu Analyze>Measure to open the window Results. To obtain the CSV, use File>Save As...

Another method–only valid when enough of the circle perimeter is depicted in the image– is taking
a very bright picture (for example, a picture of a room with walls painted in light colors) with
the lens completely free (do not use any mount). Then, digitize points over the circle perimeter.
This was the method used for producing the example file (see Examples). It is worth noting that
the perimeter of the circle depicted in a circular hemispherical photograph is not necessarily the
horizon.

Value

Numeric vector of length two. Raster coordinates of the zenith, assuming a lens facing up with its
optical axis parallel to the vertical line. It is important to note the difference between the raster
coordinates and the Cartesian coordinates. In the latter, the vertical axis value decreases downward,
but the opposite is true for the raster coordinates, which works like a spreadsheet.

References

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digital cover
photography and its application to remote sensing.” Remote Sensing, 1(4), 1298–1320. doi:10.3390/
rs1041298.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calibrate_lens(), expand_noncircular(),
fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(), zenith_image()

Examples

Not run:
path <- system.file("external/points_over_perimeter.csv",

package = "rcaiman")
calc_zenith_raster_coord(path)

End(Not run)

https://www6.paca.inrae.fr/can-eye/content/download/3052/30819/version/4/file/CAN_EYE_User_Manual.pdf
https://www6.paca.inrae.fr/can-eye/content/download/3052/30819/version/4/file/CAN_EYE_User_Manual.pdf
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://doi.org/10.3390/rs1041298
https://doi.org/10.3390/rs1041298

8 calibrate_lens

calibrate_lens Calibrate lens

Description

Calibrate a fisheye lens. This type of lens has wide field of view and a consistent azimuthal distor-
tion. The latter property allows fitting a precise mathematical relation between the distance to the
zenith on the image space and the zenith angle on the hemispherical space.

Usage

calibrate_lens(path_to_csv, degree = 3)

Arguments

path_to_csv Character vector of length one. Path to a CSV file created with the point selec-
tion tool of ‘ImageJ’ software.

degree Numeric vector of length one. Polynomial model degree.

Details

These are the instructions to produce the CSV file required by this function. The following materials
are required:

• this package and ImageJ

• camera and lens

• tripod

• standard yoga mat

• table about two times wider than the yoga mat width

• twenty two push pins of different colors

• scissors

• one print of this sheet (A1 size, almost like a poster).

Cut the sheet by the dashed line. Place the yoga mat extended on top of the table. Place the sheet
on top of the yoga mat. Align the dashed line with the yoga mat border closest to you. Place push
pins on each cross. If you are gentle, the yoga mat will allows you to do that without damaging the
table. Of course, other materials could be used to obtain the same result, such as cardboard, foam,
nails, etc.

Place the camera on the tripod. Align its optical axis with the table while looking for getting an
image showing the overlapping of the three pairs of push pins as instructed in the print. In order to
take care of the line of pins at 90º relative to the optical axis, it may be better to use the naked eye
to align the front of the lens with the pins.

Transfer the photograph to the computer, open it with ImageJ, and use the point selection tool to
digitize the push pins, starting from the zenith push pin and not skipping any showed push pin.

https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool
https://imagej.nih.gov/ij/download.html
https://osf.io/tudzc/download
https://imagej.nih.gov/ij/docs/guide/146-19.html#sec:Multi-point-Tool

chessboard 9

Then, use the dropdown menu Analyze>Measure to open the window Results. To obtain the CSV,
use File>Save As...

This method was inspired by the calibration board from Clark and Follin (1988).

TIP: use test_lens_coef to test if coefficients are OK. If not, try moving the last points a little
bit. Putting the last one a few pixels farther from the zenith is usually enough.

Value

An object of class list with named elements. lens_coef stands for lens coefficients, max_theta
for maximum zenith angle in degrees, and max_theta_px for distance in pixels between the zenith
and the maximum zenith angle in pixels units. The latter should be double checked, particularly
if the zenith push pin is not exactly on the zenith pixel. To that end, do the following on Im-
ageJ: use the rectangular selection tool to create a small rectangle, open the Specify window by
going to the dropdown menu Edit>Selection>Specify..., insert the zenith coordinates (obtained with
calc_zenith_raster_coord) into the respective X and Y fields in order to align the upper-left
corner of the rectangle with the zenith, mark it with the brush, use the straight selection tool to find
the length within the zenith and the maximum zenith angle showed in the image.

References

Clark JA, Follin GM (1988). “A simple equal area calibration for fisheye photography.” Agricultural
and Forest Meteorology, 44(1), 19–25. doi:10.1016/01681923(88)900305.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
expand_noncircular(), fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(),
zenith_image()

Examples

path <- system.file("external/Results_calibration.csv", package = "rcaiman")
calibration <- calibrate_lens(path)
calibration$lens_coef
calibration$max_theta
calibration$max_thera_px
test_lens_coef(calibration$lens_coef)

chessboard Chessboard segmentation

Description

Chessboard segmentation

Usage

chessboard(r, size)

https://imagej.nih.gov/ij/docs/guide/146-19.html#toc-Subsection-19.1
https://imagej.nih.gov/ij/docs/guide/146-19.html#toc-Subsection-19.14
https://imagej.nih.gov/ij/docs/guide/146-19.html#toc-Subsection-19.2
https://doi.org/10.1016/0168-1923%2888%2990030-5

10 cie_sky_model_raster

Arguments

r SpatRaster.

size Numerica vector of length one. Size of the square segments.

Value

A single layer image of the class SpatRaster with integer values.

See Also

Other Segmentation Functions: mask_hs(), mask_sunlit_canopy(), polar_qtree(), qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
caim <- read_caim()
seg <- chessboard(caim, 100)
plot(caim$Blue)
plot(extract_feature(caim$Blue, seg))

End(Not run)

cie_sky_model_raster CIE sky model raster

Description

CIE sky model raster

Usage

cie_sky_model_raster(z, a, sun_coord, sky_coef)

Arguments

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

sun_coord Numeric vector of length two. Zenith and azimuth angles in degrees, corre-
sponding to the location of the solar disk center.

sky_coef Numeric vector of length five. Parameters of the sky model.

See Also

Other Sky Reconstruction Functions: fit_cie_sky_model(), fit_coneshaped_model(), fit_trend_surface(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

colorfulness 11

Examples

Not run:
z <- zenith_image(1400, lens())
a <- azimuth_image(z)
path <- system.file("external", package = "rcaiman")
skies <- read.csv(file.path(path, "15_CIE_standard_skies.csv"))
parameters are from http://dx.doi.org/10.1016/j.energy.2016.02.054
sky_coef <- skies[4,1:5]
sun_coord <- c(45, 0)
plot(cie_sky_model_raster(z, a, sun_coord, sky_coef))

End(Not run)

colorfulness Quantify the colorfulness of an image

Description

Quantify the colorfulness of an sRGB image using a bidimensional space formed by the green/red
and the blue/yellow axes of the CIE L*a*b* space, symbolized with a* and b*, respectively. The
proposed index is defined as the surface of the a*b* plane covered by colors from the image relative
to the surface that the whole sRGB cube covers in the same plane, expressed in percentage.

Usage

colorfulness(caim, m = NULL, plot = FALSE)

Arguments

caim SpatRaster. The return of a call to read_caim.

m SpatRaster. A mask. For hemispherical photographs, check mask_hs. Default
(NULL) is the equivalent to enter !is.na(caim$Red).

plot Logical vector of length one. If is TRUE, a plot will be send to the graphic device,
showing the data on the CIE a*b* space.

Details

Pixels from the image covered by pixels from m with value 1 will be taking into account in the
computations.

If plot = TRUE is used, a plot is sent to the active graphics device. It shows the color from the image
plotted into a bidimensional space made by the axis a* and b* of the CIE L*a*b* space.

An early version of this function was used in Martin et al. (2020).

Value

A numeric vector of length one and, if the argument plot is TRUE, an object returned by plot is
send to the graphic device.

12 defuzzify

References

Martin DA, Wurz A, Osen K, Grass I, Hölscher D, Rabemanantsoa T, Tscharntke T, Kreft H
(2020). “Shade-Tree Rehabilitation in Vanilla Agroforests is Yield Neutral and May Translate into
Landscape-Scale Canopy Cover Gains.” Ecosystems, 24(5), 1253–1267. doi:10.1007/s10021020-
005865.

See Also

Other Tool Functions: defuzzify(), extract_dn(), extract_feature(), extract_rl(), extract_sky_points(),
masking(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

caim <- read_caim() %>% normalize()
plotRGB(caim*255)
colorfulness(caim)

path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2) %>% normalize()
plotRGB(caim*255)
colorfulness(caim)

defuzzify Defuzzify fuzzy classification

Description

This function translates degree of membership into Boolean logic using a regional approach. The
result will ensure that the fuzzy and Boolean version will agree at the chosen level of aggrega-
tion (controlled by the argument segmentation). This method makes perfect sense to translate a
subpixel classification of gap fraction–or a linear ratio (Lang et al. 2013)–into a binary product.

Usage

defuzzify(mem, segmentation)

Arguments

mem An object of the class SpatRaster. Degree of membership.

segmentation An object of the class SpatRaster, such as the result of a call to sky_grid_segmentation.

Details

This method is also available in the HSP software package (Lang et al. 2013).

Value

An object of the class SpatRaster containing binary information.

https://doi.org/10.1007/s10021-020-00586-5
https://doi.org/10.1007/s10021-020-00586-5

enhance_caim 13

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests/ Metsa võrastiku
läbipaistvuse mõõtmine digitaalsete poolsfäärikaamerate abil.” Forestry Studies, 59(1), 13–27.
doi:10.2478/fsmu20130008.

See Also

Other Tool Functions: colorfulness(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), masking(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
r[is.na(z)] <- 0 # because FOV > 180
bin <- ootb_mblt(r, z, a)
plot(bin$bin)
ratio <- r / bin$sky_s
ratio <- normalize(ratio, 0, 1, TRUE)
plot(ratio)
g <- sky_grid_segmentation(z, a, 10)
bin2 <- defuzzify(ratio, g)
plot(bin2)
plot(bin$bin - bin2)

End(Not run)

enhance_caim Enhance canopy image

Description

This function was first proposed in Díaz and Lencinas (2015). It uses the color perceptual attributes
(hue, lightness, and chroma) to enhance the contrast between the sky and plants through fuzzy
classification. It performs the next classification rules, here expressed in natural language: clear
sky is blue and clouds decrease its chroma; if clouds are highly dense, then the sky is achromatic,
and, in such cases, it can be light or dark; everything that does not match this description is not sky.
These linguistic rules were translated to math language by means of fuzzy logic.

https://doi.org/10.2478/fsmu-2013-0008

14 enhance_caim

Usage

enhance_caim(
caim,
m = NULL,
sky_blue = NULL,
w_red = 0,
thr = NULL,
fuzziness = NULL,
gamma = 2.2

)

Arguments

caim SpatRaster. The return of a call to read_caim.

m SpatRaster. A mask. For hemispherical photographs, check mask_hs. Default
(NULL) is the equivalent to enter !is.na(caim$Red). See the Details section in
local_fuzzy_thresholding to understand how this argument can modify the
output.

sky_blue color. Is the target_color argument to be passed to membership_to_color.
Default (NULL) is the equivalent to enter sRGB(0.1, 0.4, 0.8)–the HEX color
code is #1A66CC, it can be entered into a search engine (such as Mozilla Fire-
fox) to see a color swatch.

w_red Numeric vector of length one. Weight of the red channel. A single layer image
is calculated as a weighted average of the blue and red channels. This layer
is used as lightness information. The weight of the blue is the complement of
w_red.

thr Numeric vector of length one. Location parameter of the logistic membership
function. Use NULL to estimate it automatically with thr_isodata.

fuzziness Numeric vector of length one. This number is a constant value that scales mem.
Use NULL to estimate it automatically as the midpoint between the maximum
and minimum values of lightness.

gamma Numeric vector of length one. This is for applying a gamma back correction to
the lightness information (see Details and argument w_red).

Details

This is a pixel-wise methodology that evaluates the possibility for a pixel to be member of the class
Gap. High score could mean either high membership to sky_blue or, in the case of achromatic pix-
els, a high membership to values above thr. The algorithm internally uses membership_to_color
and local_fuzzy_thresholding. The argument sky_blue is the target_color of the former
function, which output is the argument mem of the latter function.

The argument sky_blue can be obtained from a photograph that clearly shows the sky. Then, it can
be used to process all the others taken with the same equipment, configuration, and protocol.

The gamma argument, along with gbc, is used to back-correct the values passed to local_fuzzy_thresholding.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package.

enhance_caim 15

Value

An object of class SpatRaster–with same pixel dimensions than caim–that should show more con-
trast between the sky and plant pixels than any of the individual bands from caim; if not, different
parameters should be tested.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

See Also

Other Pre-processing Functions: gbc(), local_fuzzy_thresholding(), membership_to_color(),
normalize()

Examples

Not run:
#circular hemispherical photo
path <- system.file("external/b4_2_5724.jpg", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(1490, lens("Nikon_FCE9"))
a <- azimuth_image(z)
m <- !is.na(z)
blue <- caim$Blue %>% gbc()
plot(caim)

sky_blue_sample <- read_caim(path, c(1092,1243), 66, 48)
plot(sky_blue_sample)
sky_blue <- apply(sky_blue_sample[], 2, median) %>% normalize(.,0,255) %>%

as.numeric() %>%
matrix(., ncol = 3) %>%
sRGB()

hex(sky_blue)
Use hex() to obtain the HEX color code. To see a color swatch, enter the
HEX code into a search engine (such as Mozilla Firefox). If the color is
too pale (i.e., unsaturated), such as the one from the example (#6D90D0),
it would be better to use the default. Alternatively, the values can be
stretched, which often produces a more intense color. That is demonstrated
below.
sky_blue_sample <- read_caim(path, c(1092,1243), 66, 48)
plot(sky_blue_sample)
sky_blue <- apply(sky_blue_sample[], 2, median) %>% normalize() %>%

as.numeric() %>%
matrix(., ncol = 3) %>%
sRGB()

hex(sky_blue) #005AFF

caim <- normalize(caim)
ecaim <- enhance_caim(caim, m)
plot(ecaim)

https://doi.org/10.1109/lgrs.2015.2425931

16 enhance_caim

plot(blue)

m2 <- !mask_sunlit_canopy(caim, m) & m
hist(ecaim[m2])
hist(blue[m])

plot(apply_thr(ecaim, thr_isodata(ecaim[m2])))
plot(apply_thr(blue, thr_isodata(blue[m])))

#hemispherical photo from a smartphone
path <- system.file("external/APC_0581.jpg", package = "rcaiman")
caim <- read_caim(path)
z <- zenith_image(2132/2, lens("Olloclip"))
a <- azimuth_image(z)
zenith_colrow <- c(1063, 771)/2
caim <- expand_noncircular(caim, z, zenith_colrow) %>% normalize()
m <- !is.na(caim$Red) & !is.na(z)
caim[!m] <- NA
blue <- caim$Blue %>% gbc()

ecaim <- enhance_caim(caim, m)
plot(ecaim)
plot(blue)

m2 <- !mask_sunlit_canopy(caim, m) & m
hist(ecaim[m2])
hist(blue[m])

plot(apply_thr(ecaim, thr_isodata(ecaim[m2])))
plot(apply_thr(blue, thr_isodata(blue[m])))

#restricted view canopy photo
path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path)
plot(caim)
blue <- gbc(caim$Blue)
plot(blue)

caim <- normalize(caim)
ecaim <- enhance_caim(caim)
plot(ecaim)

m <- !mask_sunlit_canopy(caim)
hist(ecaim[])
hist(ecaim[m])
hist(blue)
plot(apply_thr(ecaim, thr_isodata(ecaim[m])))
plot(apply_thr(blue, thr_isodata(blue[])))

End(Not run)

expand_noncircular 17

expand_noncircular Expand non-circular

Description

Expand a non-circular hemispherical photograph.

Usage

expand_noncircular(caim, z, zenith_colrow)

Arguments

caim SpatRaster. The return of a call to read_caim.

z SpatRaster built with zenith_image.

zenith_colrow Numeric vector of length two. Raster coordinates of the zenith. See calc_zenith_raster_coord.

Value

An object of class SpatRaster that is the result of adding margins (NA pixels) to caim. The zenith
point depicted in the picture should be in the center of the image or very close to it.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
calibrate_lens(), fisheye_to_equidistant(), fisheye_to_pano(), lens(), test_lens_coef(),
zenith_image()

Examples

Not run:
#noncircular fisheye from a DSLR camera
my_file <- file.path(tempdir(), "DSC_2881.JPG")
download.file("https://osf.io/x8urg/download", my_file,

method = "auto", mode = "wb"
)

r <- read_caim(my_file)
diameter <- calc_diameter(lens("Nikkor_10.5_mm"), 1202, 53)
zenith_colrow <- c(1503, 998)
z <- zenith_image(diameter, lens("Nikkor_10.5_mm"))
r <- expand_noncircular(r, z, zenith_colrow)
plot(r, col = seq(0,1,1/255) %>% grey())
plot(is.na(r$Red), add = TRUE, alpha = 0.3,legend = FALSE)

#noncircular fisheye from a smartphone with an auxiliary lens
path <- system.file("external/APC_0581.jpg", package = "rcaiman")
caim <- read_caim(path)

18 extract_dn

z <- zenith_image(2132/2, lens("Olloclip"))
a <- azimuth_image(z)
zenith_colrow <- c(1063, 771)/2
caim <- expand_noncircular(caim, z, zenith_colrow)
plot(caim$Blue, col = seq(0,1,1/255) %>% grey())
m <- !is.na(caim$Red) & !is.na(z)
plot(m, add = TRUE, alpha = 0.3, legend = FALSE)

#restricted view canopy photo
path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path)
plot(caim)
caim <- normalize(caim)
diameter <- calc_diameter(lens(), sqrt(nrow(caim)^2 + ncol(caim)^2)/2, 90)
z <- zenith_image(diameter, lens())
caim <- expand_noncircular(caim, z, c(ncol(caim)/2, nrow(caim)/2))
m <- !is.na(caim$Red)
a <- azimuth_image(z)
caim[!m] <- 0
z <- normalize(z, 0, 90) * 20 # a diagonal FOV of 40 degrees
plot(caim$Blue, col = seq(0,1,1/255) %>% grey())
m <- !is.na(caim$Red) & !is.na(z)
plot(m, add = TRUE, alpha = 0.3, legend = FALSE)

End(Not run)

extract_dn Extract digital numbers

Description

It is a wrapper function around extract.

Usage

extract_dn(r, img_points, use_window = TRUE, fun = NULL)

Arguments

r SpatRaster.

img_points The result of a call to extract_sky_points, or an object of the same class and
structure.

use_window Logical vector of length one. If TRUE, a 3× 3 window will be used to extract the
sky digital number from r.

fun A function that takes a vector as input and returns a one-length numeric or
logical vector as output (e.g. mean).

extract_feature 19

Value

An object of the class data.frame, which is the argument img_points with an added column per
each layer from r. The layer names are used to name the new columns. If a function is provided
as the fun argument, the result will be summarized per column using the provided function, and
the row and col information will be omitted. Moreover, if r is an RGB image, a color will be
returned instead of a data.frame. The latter feature is useful for obtaining the sky_blue argument
for enhance_caim.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_feature(), extract_rl(), extract_sky_points(),
masking(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

Not run:
caim <- read_caim()
r <- gbc(caim$Blue)
bin <- apply_thr(r, thr_isodata(r[]))
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_dn(caim, sky_points)
head(sky_points)
sky_points <- extract_sky_points(r, bin, g)
sky_points

End(Not run)

ImageJ can be used to digitize points.
See calc_zenith_raster_coord() for details.
path <- system.file("external/b4_2_5724.jpg", package = "rcaiman")
caim <- read_caim(path)
plot(caim)
path <- system.file("external/points_over_perimeter.csv",

package = "rcaiman")
img_points <- read.csv(path)
img_points <- img_points[,c(ncol(img_points), ncol(img_points)-1)]
colnames(img_points) <- c("row", "col")
head(img_points)
v <- cellFromRowCol(caim, img_pointsrow, img_pointscol) %>%

xyFromCell(caim, .) %>% vect()
plot(v, add = TRUE, col = 2)
extract_dn(caim, img_points, fun = median)

extract_feature Extract feature

20 extract_feature

Description

Extract features from raster images.

Usage

extract_feature(
r,
segmentation,
fun = mean,
return_raster = TRUE,
ignore_label_0 = TRUE

)

Arguments

r SpatRaster. Single layer raster.

segmentation SpatRaster. The segmentation of r.

fun A function that takes a vector as input and returns a one-length numeric or
logical vector as output (e.g. mean).

return_raster Logical vector of length one, see details.

ignore_label_0 Logical vector of length one. If this is TRUE, then the segment labeled with 0
will be ignored.

Details

Given a single-layer raster, a segmentation, and a function, extract_features will return a nu-
meric vector or a SpatRaster depending on whether the parameter return_raster is TRUE or FALSE.
For the first case, each pixel of each segment will adopt the respective extracted feature value. For
the second case, the return will be the extracted feature as a vector of length equal to the total num-
ber of segments. Each extracted feature value will be obtained by processing all pixels that belong
to a segment with the provided function.

Value

If return_raster is set to TRUE, then an object of class SpatRaster with the same pixel dimensions
than r will be returned. Otherwise, the return is a numeric vector of length equal to the number of
segments found in segmentation.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_rl(), extract_sky_points(),
masking(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

Not run:
r <- read_caim()
z <- zenith_image(ncol(r),lens("Nikon_FCE9"))

extract_rl 21

a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
print(extract_feature(r$Blue, g, return_raster = FALSE))
plot(extract_feature(r$Blue, g, return_raster = TRUE))

End(Not run)

extract_rl Extract relative luminance

Description

Extract the luminance relative to the zenith digital number.

Usage

extract_rl(
r,
z,
a,
sky_points,
no_of_points = 20,
z_thr = 2,
use_window = TRUE

)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.
a SpatRaster built with azimuth_image.
sky_points An object of class data.frame. The result of a call to extract_sky_points. As

an alternative, both ImageJ and HSP software package (Lang et al. 2013) can be
used to manually digitize points. See extract_dn and read_manual_input for
details.

no_of_points Numeric vector on length one. The number of near-zenith points required for
the estimation of the zenith DN.

z_thr Numeric vector on length one. The starting maximum zenith angle used to
search for near-zenith points.

use_window Logical vector of length one. If TRUE, a 3× 3 window will be used to extract the
sky digital number from r.

Details

The search for near-zenith points starts in the region ranged between 0 and z_thr. If the number of
near-zenith points is less than no_of_points, the region increases by steps of 2 degrees of zenith
angle till the required number of points is reached.

https://imagej.nih.gov/ij/download.html

22 extract_sky_points

Value

A list of three objects, zenith_dn and max_zenith_angle from the class numeric, and sky_points
from the class data.frame; zenith_dn is the estimated zenith digital number, max_zenith_angle is
the maximum zenith angle reached in the search for near-zenith sky points, and sky_points is the
input argument sky_points with the additional columns: a, z, dn, and rl, which stand for azimuth
and zenith angle in degrees, digital number, and relative luminance, respectively. If NULL is provided
as no_of_points, then zenith_dn is forced to one and dn, and rl are equals.

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests/ Metsa võrastiku
läbipaistvuse mõõtmine digitaalsete poolsfäärikaamerate abil.” Forestry Studies, 59(1), 13–27.
doi:10.2478/fsmu20130008.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_sky_points(),
masking(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
g <- sky_grid_segmentation(z, a, 10)
bin <- find_sky_pixels(r, z, a)
sky_points <- extract_sky_points(r, bin, g)
rl <- extract_rl(r, z, a, sky_points, 1)

End(Not run)

extract_sky_points Extract sky points

Description

Extract sky points for model fitting.

Usage

extract_sky_points(r, bin, g, dist_to_plant = 3, min_raster_dist = 3)

https://doi.org/10.2478/fsmu-2013-0008

extract_sky_points 23

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely to be pure sky pixels.

g SpatRaster built with sky_grid_segmentation or chessboard.
dist_to_plant, min_raster_dist

Numeric vector of length one or NULL.

Details

This function will automatically sample sky pixels from the sky regions delimited by bin. The
density and distribution of the sampling points is controlled by the arguments g, dist_to_plant,
and min_raster_dist.

As the first step, sky pixels from r are evaluated to find, for each cell of g, the pixel with maximum
digital value (local maximum). The argument dist_to_plant allows users to establish a buffer
zone for bin, meaning a size reduction of original sky regions.

The final step filters these local maximum values by calculating distances between points on the
raster space. It discards new points that have a distance from existing points minor than min_raster_dist.
Cell labels determine the order in which the points are evaluated.

To skip a given filtering step, use code NULL as argument input. For instance, to provide min_raster_dist
= NULL will return points omitting raster distance calculation, which means a faster output in com-
parison with using min_raster_dist = 1.

Value

An object of the class data.frame with two columns named col and row.

See Also

fit_cie_sky_model

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
masking(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
bin <- ootb_obia(caim, z, a)
g <- sky_grid_segmentation(z, a, 10)
r <- gbc(caim$Blue*255)
sky_points <- extract_sky_points(r, bin, g)
cells <- cellFromRowCol(z, sky_pointsrow, sky_pointscol)
hist(r[cells][,1])
xy <- xyFromCell(z, cells)
plot(r)

24 extract_sun_coord

plot(vect(xy), add = TRUE, col = 2)

End(Not run)

extract_sun_coord Extract sun coordinates

Description

Extract the sun coordinates for CIE sky model fitting.

Usage

extract_sun_coord(r, z, a, bin, g, max_angular_dist = 30)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely to be pure sky pixels.

g SpatRaster built with sky_grid_segmentation or chessboard.
max_angular_dist

Numeric vector of length one. Angle in degrees to control the maximum poten-
tial size of the solar corona.

Details

This function uses an object-based image analyze framework. The segmentation is given by g and
bin. For every cell of g, the pixels from r that are equal to one on bin are selected, and its maximum
value is calculated. Then, the 95th percentile of these maximum values is computed and used to
filter out cells below that threshold; i.e, only the cells with at least one extremely bright sky pixel is
selected.

The selected cells are grouped based on adjacency, and new bigger segments are created from
these groups. The degree of membership to the class Sun is calculated for every new segment by
computing the number of cells that constitute the segment and its mean digital number (values taken
from r). In other words, the largest and brightest segments are the ones that score higher. The one
with the highest score is selected as the sun seed.

The angular distance from the sun seed to every other segments are computed, and only the seg-
ments not farther than max_angular_dist are classified as part of the sun corona. A multi-part
segment is created by merging the sun-corona segments and, finally, the center of its bounding box
is considered as the sun location.

find_sky_pixels 25

Value

Object of class list with two numeric vectors of length two named row_col and zenith_azimuth. The
former is the raster coordinates of the solar disk (row and column), and the other is the angular
coordinates (zenith and azimuth angles in degrees).

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
bin <- ootb_obia(caim, z, a)
g <- sky_grid_segmentation(z, a, 10)
r <- gbc(caim$Blue*255)
sun_coord <- extract_sun_coord(r, z, a, bin, g, max_angular_dist = 30)
xy <- cellFromRowCol(z, sun_coord$row_col[1], sun_coord$row_col[2]) %>%

xyFromCell(z, .)
plot(r)
plot(vect(xy), add = TRUE, col = 2)

End(Not run)

find_sky_pixels Find sky pixels

Description

Find sky pixels automatically.

Usage

find_sky_pixels(r, z, a, sample_size_pct = 30)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

sample_size_pct

Numeric vector of length one. Minimum percentage of cells to sample. The
population is comprised of 1296 cells of 5× 5 degrees.

26 find_sky_pixels_nonnull

Details

This function assumes that:

• there is at least one pure sky pixel at the level of cells of 30× 30 degrees, and

• sky pixels have a digital number (DN) greater than canopy pixels have.

For each 30 × 30 cell, this method computes a quantile value and uses it as a threshold to select
the pure sky pixels from the given cell. As a result, a binarized image is produced in a regional
binarization fashion (regional_thresholding). This process starts with a quantile probability of
0.99. After producing the binarized image, this function uses a search grid with cells of 5×5 degrees
to count how many of these cells have at least one sky pixel (pixels equal to one in the binarized
image). If the percentage of cells with sky pixels does not reach argument sample_size_pct, it
goes back to the binarization step but decreasing the probability by 0.01 points.

If probability reach 0.9 and the sample_size_pct criterion were not yet satisfied, the sample_size_pct
is decreased one percent and the process starts all over again.

Value

An object of class SpatRaster with values 0 and 1. This layer masks pixels that are very likely pure
sky pixels.

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), obia(), ootb_mblt(),
ootb_obia(), regional_thresholding(), thr_image(), thr_isodata()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
bin <- find_sky_pixels(r, z, a)
plot(bin)

End(Not run)

find_sky_pixels_nonnull

Find sky pixels following the non-null criteria

Description

Find sky pixels using the increase in the number of cells having no sky pixels (the so-called null
cells) as stopping criteria.

find_sky_pixels_nonnull 27

Usage

find_sky_pixels_nonnull(r, sky, g, slope = 0.5)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

sky An object of class SpatRaster produced with fit_coneshaped_model, fit_trend_surface,
fit_cie_sky_model, or ootb_sky_reconstruction.

g SpatRaster built with sky_grid_segmentation or chessboard.

slope Numeric vector of length one. See section Details in thr_image.

Details

The arguments sky and slope are passed to thr_image, which output is in turn passed to apply_thr
along with r. As a result, r is binarized and used along with g to compute the number of null cells.
The process is repeated but increasing slope in steps of 0.05 as long as the number of null cells
remains constant.

Value

An object of class SpatRaster with values 0 and 1.

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels(), obia(), ootb_mblt(), ootb_obia(),
regional_thresholding(), thr_image(), thr_isodata()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
bin <- find_sky_pixels(r, z, a)
g <- sky_grid_segmentation(z, a, 10)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_rl(r, z, a, sky_points, NULL)
model <- fit_coneshaped_model(sky_points$sky_points)
sky_cs <- model$fun(z, a)
g[mask_hs(z, 0, 10) | mask_hs(z, 70, 90)] <- NA
bin <- find_sky_pixels_nonnull(r, sky_cs, g)
plot(bin)

End(Not run)

28 fisheye_to_equidistant

fisheye_to_equidistant

Fisheye to equidistant

Description

Fisheye to equidistant projection (also known as polar projection).

Usage

fisheye_to_equidistant(r, z, a, radius = 745)

reproject_to_equidistant(r, z, a, radius = 745)

Arguments

r SpatRaster.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

radius Numeric integer of length one. Radius of the reprojected hemispherical image
(i.e., the output).

Details

There is no interpolation, so NA values may be generated depending on both the radius argument
and how much the lens projection differs from the polar one. As a rule of thumb, increase radius
as long as it does not produce NA values on the regions to be analyzed.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
calibrate_lens(), expand_noncircular(), fisheye_to_pano(), lens(), test_lens_coef(),
zenith_image()

Examples

Not run:
caim <- read_caim()
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
bin <- apply_thr(caim$Blue, 0.5)
bin_equi <- fisheye_to_equidistant(bin, z, a, radius = 400)
bin_equi <- apply_thr(bin_equi, 0.5)
plot(bin)
plot(bin_equi)
use write_bin(bin, "path/file_name") to have a file ready

fisheye_to_pano 29

for calculating LAI with CIMES, GLA, CAN-EYE, etc.

End(Not run)

fisheye_to_pano Fisheye to panoramic

Description

Fisheye to panoramic (cylindrical projection)

Usage

fisheye_to_pano(r, z, a, fun = mean, angle_width = 1)

Arguments

r SpatRaster.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

fun A function that takes a vector as input and returns a one-length numeric or
logical vector as output (e.g. mean).

angle_width Numeric vector of length one. It should be 30, 15,10, 7.5, 6, 5, 3.75, 3,
2.5, 1.875, 1 or 0.5 degrees. This constrain is rooted in the requirement of a
value able to divide both the 0 to 360 and 0 to 90 ranges into a whole number of
segments.

Details

An early version of this function was used in Díaz et al. (2021).

References

Díaz GM, Negri PA, Lencinas JD (2021). “Toward making canopy hemispherical photography
independent of illumination conditions: A deep-learning-based approach.” Agricultural and Forest
Meteorology, 296, 108234. doi:10.1016/j.agrformet.2020.108234.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
calibrate_lens(), expand_noncircular(), fisheye_to_equidistant(), lens(), test_lens_coef(),
zenith_image()

https://doi.org/10.1016/j.agrformet.2020.108234

30 fit_cie_sky_model

Examples

Not run:
caim <- read_caim()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
pano <- fisheye_to_pano(caim, z, a)
plotRGB(pano)

End(Not run)

fit_cie_sky_model Fit CIE sky model

Description

Use maximum likelihood to estimate the coefficients of the CIE sky model that best fit to data
sampled from a canopy photograph.

Usage

fit_cie_sky_model(
r,
z,
a,
sky_points,
zenith_dn,
sun_coord,
custom_sky_coef = NULL,
std_sky_no = NULL,
general_sky_type = NULL,
twilight = TRUE,
rmse = FALSE,
method = "BFGS"

)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

sky_points The data.frame returned by extract_rl or a data.frame with same structure
and names.

zenith_dn Numeric vector of length 1. Zenith digital number, see extract_rl for how to
obtain it.

fit_cie_sky_model 31

sun_coord An object of class list. The result of a call to extract_sun_coord, or an object
with same structure and names. See also row_col_from_zenith_azimuth in
case you want to provide values based on date and time of acquisition and the R
package ’suncalc’.

custom_sky_coef

Numeric vector of length five. Custom starting coefficients of the sky model.
By default, they are drawn from standard skies.

std_sky_no Numeric vector. Standard sky number from Table 1 from Li et al. (2016).
general_sky_type

Character vector of length one. It could be any of these: "Overcast", "Clear", or
"Partly cloudy". See Table 1 from Li et al. (2016) for additional details.

twilight Logical vector of length one. If it is TRUE and the initial standard parameters be-
long to the "Clear" general sky type, sun zenith angles from 90 to 96 degrees will
be tested (civic twilight). This is necessary since extract_sun_coord would
mistakenly recognize the center of what can be seen of the solar corona as the
solar disk.

rmse Logical vector of length one. If it is TRUE, the criteria for selecting the best sky
model is to choose the one with less root mean square error calculated by using
sky_points as reference values. Otherwise, the criteria is to evaluate the whole
hemisphere by calculating the product between the square ratio of r to the sky
model and the fraction of pixels from this new layer that are above one or below
zero, and selecting the sky model that produce the least value.

method Optimization method to use. See optim.

Details

This function is based on Lang et al. (2010). In theory, the best result would be obtained with
data showing a linear relation between digital numbers and the amount of light reaching the sensor.
However, because the CIE sky model is indeed the adjoin of two mathematical model, it is capable
of handling any non-linearity since it is not a physical model with strict assumptions.

Ultimately, when the goal is to calculate the ratio of canopy to sky digital numbers, if the latter is
accurately constructed, any non-linearity will be canceled. Please, see interpolate_sky_points
for further considerations.

Nevertheless, the recommended input for this function is data pre-processed with the HSP software
package (Lang et al. 2013). Please, refer to write_sky_points for additional details about HSP.

The following code exemplifies how this package can be used to compare the manually-guided
fitting provided by HSP against the automatic fitting provided by this package. The code assumes
that the user is working within an RStudio project located in the HSP project folder.

r <- read_caim("manipulate/IMG_1013.pgm")
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
manual_input <- read_manual_input(".", "IMG_1013")
sun_coord <- manual_inputsun_coordrow_col
sun_coord <- zenith_azimuth_from_row_col(z, sun_coord, lens())
sky_points <- manual_input$sky_points

32 fit_cie_sky_model

rl <- extract_rl(r, z, a, sky_points)
model <- fit_cie_sky_model(r, z, a, rlsky_points, rlzenith_dn, sun_coord)
cie_sky <- model$relative_luminance * model$zenith_dn
plot(r/cie_sky)

r <- read_caim("manipulate/IMG_1013.pgm")
sky_coef <- read_opt_sky_coef(".", "IMG_1013")
cie_sky_manual <- cie_sky_model_raster(z, a, sun_coord$zenith_azimuth, sky_coef)
cie_sky_manual <- cie_sky_manual * manual_input$zenith_dn
plot(r/cie_sky_manual)

If you use this function in your research, please cite Lang et al. (2010) in addition to this package.

Value

The result includes the following: (1) the output produced by mle2, (2) the 5 coefficients, (3)
observed and predicted values, the sun coordinates –zenith and azimuth angle in degrees–, (4) the
relative luminance image calculated for every pixel using the estimated coefficients and correspond-
ing sun coordinates, (4) the digital number at the zenith, and (5) the description of the standard sky
from which the initial coefficients were drawn. See Li et al. (2016) to know more about these
coefficients.

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests/ Metsa võrastiku
läbipaistvuse mõõtmine digitaalsete poolsfäärikaamerate abil.” Forestry Studies, 59(1), 13–27.
doi:10.2478/fsmu20130008.

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

Li DH, Lou S, Lam JC, Wu RH (2016). “Determining solar irradiance on inclined planes from
classified CIE (International Commission on Illumination) standard skies.” Energy, 101, 462–470.
doi:10.1016/j.energy.2016.02.054.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_coneshaped_model(), fit_trend_surface(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)

bin <- ootb_obia(caim, z, a)

https://doi.org/10.2478/fsmu-2013-0008
https://doi.org/10.1016/j.agrformet.2009.08.001
https://doi.org/10.1016/j.energy.2016.02.054

fit_cie_sky_model 33

bin <- bin & mask_hs(z, 0, 80)

r <- gbc(caim$Blue*255)
g <- sky_grid_segmentation(z, a, 10)
sun_coord <- extract_sun_coord(r, z, a, bin, g)
sky_points <- extract_sky_points(r, bin, g)
rl <- extract_rl(r, z, a, sky_points)
model <- fit_cie_sky_model(r, z, a, rl$sky_points,

rl$zenith_dn, sun_coord,
rmse = TRUE,
general_sky_type = "Partly cloudy")

sky_cie <- model$relative_luminance * model$zenith_dn
sky_cie <- normalize(sky_cie, 0, 1, TRUE)
plot(sky_cie)
plot(r/sky_cie)

#to provide custom starting coefficient
path <- system.file("external", package = "rcaiman")
skies <- utils::read.csv(file.path(path, "15_CIE_standard_skies.csv"))
custom_sky_coef <- skies[9, 1:5] %>% as.numeric()
fit_cie_sky_model(r, z, a, rl$sky_points,

rl$zenith_dn, sun_coord,
rmse = TRUE,
custom_sky_coef = custom_sky_coef)

#restricted view canopy photo
path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path)
plot(caim)
caim <- normalize(caim)
diameter <- calc_diameter(lens(), sqrt(nrow(caim)^2 + ncol(caim)^2)/2, 90)
z <- zenith_image(diameter, lens())
caim <- expand_noncircular(caim, z, c(ncol(caim)/2, nrow(caim)/2))
m <- !is.na(caim$Red)
a <- azimuth_image(z)
caim[!m] <- 0
z <- normalize(z, 0, 90) * 20 # a diagonal FOV of 40 degrees, a rough guess

bin <- ootb_obia(caim)

g <- sky_grid_segmentation(z, a, 5, sequential = TRUE)
col <- terra::unique(g) %>% nrow() %>% rainbow() %>% sample()
plot(g, col = col)
r <- gbc(caim$Blue*255)
sun_coord <- extract_sun_coord(r, z, a, bin, g)
sky_points <- extract_sky_points(r, bin, g)
rl <- extract_rl(r, z, a, sky_points)
model <- fit_cie_sky_model(r, z, a, rl$sky_points,

rl$zenith_dn, sun_coord, twilight = FALSE)
sky_cie <- model$relative_luminance * model$zenith_dn
plot(sky_cie)
plot(r/sky_cie)

34 fit_coneshaped_model

End(Not run)

fit_coneshaped_model Fit cone-shaped model

Description

Statistical modeling to predict the digital numbers from spherical coordinates.

Usage

fit_coneshaped_model(sky_points, use_azimuth_angle = TRUE)

Arguments

sky_points The data.frame returned by extract_rl or a data.frame with same structure
and names.

use_azimuth_angle

Logical vector of length one. If TRUE, the Equation 4 from Díaz and Lencinas
(2018)) is used: sDN = a+ b · θ+ c · θ2 + d · sin(φ)+ e · cos(φ), where sDN
is sky digital number, a, b, c, d and e are coefficients, θ is zenith angle, and φ is
azimuth angle. If FALSE, the next simplified version based on Wagner (2001) is
used: sDN = a+ b · θ + c · θ2.

Details

An explanation of this model can be found on Díaz and Lencinas (2018), under the heading Esti-
mation of the sky DN as a previous step for our method.

If you use this function in your research, please cite Díaz and Lencinas (2018) in addition to this
package.

Value

A list of two objects, one of class function and the other of class lm (see lm). If the fitting fails, it
returns NULL. The function requires two arguments–zenith and azimuth in degrees–to return relative
luminance.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

Wagner S (2001). “Relative radiance measurements and zenith angle dependent segmentation in
hemispherical photography.” Agricultural and Forest Meteorology, 107(2), 103–115. doi:10.1016/
s01681923(00)00232x.

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/s0168-1923%2800%2900232-x
https://doi.org/10.1016/s0168-1923%2800%2900232-x

fit_trend_surface 35

See Also

thr_image

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_trend_surface(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
g <- sky_grid_segmentation(z, a, 10)
bin <- find_sky_pixels(r, z, a)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_rl(r, z, a, sky_points, NULL)
model <- fit_coneshaped_model(sky_points$sky_points)
sky_cs <- model$fun(z, a)
persp(sky_cs, theta = 90, phi = 0) #a flipped rounded cone!

End(Not run)

fit_trend_surface Fit a trend surface to sky digital numbers

Description

Fit a trend surface using surf.ls as workhorse function.

Usage

fit_trend_surface(r, z, a, bin, filling_source = NULL, np = 6)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely to be pure sky pixels.

filling_source SpatRaster. An actual or reconstructed above-canopy image to complement the
sky pixels detected through the gaps of r. If an incomplete above-canopy image
is available, non-sky pixels should be turned NA or they will be considered as
sky pixels erroneously. A photograph taken immediately after or before taking

36 fit_trend_surface

r under the open sky with the same equipment and configuration is a very good
option but not recommended under fleeting clouds. The orientation relative to
the North must be the same as for r. If it is set to NULL (default), only sky pixels
from r will be used as input.

np degree of polynomial surface

Details

This function is meant to be used after fit_coneshaped_model.

A short explanation of this function can be found on Díaz and Lencinas (2018), under the head-
ing Estimation of the sky DN as a previous step for our method, after the explanation of the
fit_coneshaped_model.

If you use this function in your research, please cite Díaz and Lencinas (2018) in addition to this
package.

Value

A list with an object of class SpatRaster and of class trls (see surf.ls).

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

See Also

thr_image

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fix_reconstructed_sky(), interpolate_sky_points(), ootb_sky_reconstruction()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
g <- sky_grid_segmentation(z, a, 10)
bin <- find_sky_pixels(r, z, a)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_rl(r, z, a, sky_points, NULL)
model <- fit_coneshaped_model(sky_points$sky_points)
sky_cs <- model$fun(z, a)
m <- mask_hs(z, 0, 80)
sky <- fit_trend_surface(r, z, a, bin, filling_source = sky_cs)
plot(sky$image)

End(Not run)

https://doi.org/10.1139/cjfr-2018-0006

fix_reconstructed_sky 37

fix_reconstructed_sky Fix reconstructed sky

Description

Automatically edit a raster image of sky digital numbers (DNs) reconstructed with functions such
as fit_coneshaped_model and fit_trend_surface.

Usage

fix_reconstructed_sky(sky, z, r, bin)

fix_predicted_sky(sky, z, r, bin)

Arguments

sky SpatRaster. Sky DNs predicted with functions such as fit_coneshaped_model
and fit_trend_surface.

z SpatRaster built with zenith_image.

r SpatRaster. The source of the sky DNs used to build sky (the data source).

bin SpatRaster. The binarization of r used to select the sky DNs for building the
sky argument.

Details

The predicted sky DNs are usually erroneous near the horizon because either they are a misleading
extrapolation or are based on corrupted data (non-pure sky DNs).

The proposed automatic edition consists of (1) flattening the values below the minimum value from
the data source–defined by r and bin–and (2) forcing the values toward the horizon to become
gradually the median value from the data source. The latter is achieved by calculating the weighted
average of the median value and the predicted sky DNs, using the ratio of z to 90 to determine the
weights.

Value

An object of class SpatRaster. The argument sky with dimensions unchanged but values edited.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fit_trend_surface(), interpolate_sky_points(), ootb_sky_reconstruction()

38 gbc

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
g <- sky_grid_segmentation(z, a, 10)
bin <- find_sky_pixels(r, z, a)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_rl(r, z, a, sky_points, NULL)
model <- fit_coneshaped_model(sky_points$sky_points)
sky_cs <- model$fun(z, a)
sky_cs <- fix_reconstructed_sky(sky_cs, z, r, bin)
persp(sky_cs, theta = 90, phi = 0)

End(Not run)

gbc Gamma back correction

Description

Gamma back correction of JPEG images.

Usage

gbc(DN_from_JPEG, gamma = 2.2)

Arguments

DN_from_JPEG Numeric vector or object from the SpatRaster class. Digital numbers from a
JPEG file (0 to 255, i.e., the standard 8-bit encoded).

gamma Numeric vector of length one. Gamma value. Please see Díaz and Lencinas
(2018) for details.

Value

The same class as DN_from_JPEG, with dimension unchanged but values rescaled between 0 and 1
in a non-linear fashion.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

https://doi.org/10.1139/cjfr-2018-0006

interpolate_sky_points 39

See Also

Other Pre-processing Functions: enhance_caim(), local_fuzzy_thresholding(), membership_to_color(),
normalize()

Examples

r <- read_caim()
r
gbc(r)

interpolate_sky_points

Interpolate sky points

Description

Interpolate values from canopy photographs.

Usage

interpolate_sky_points(sky_points, g, k = 3, p = 2, rmax = 200, col_id = "rl")

Arguments

sky_points An object of class data.frame. The result of a call to extract_rl or extract_dn,
or a data.frame with same basic structure and names.

g SpatRaster built with sky_grid_segmentation or chessboard.

k Numeric vector of length one. Number of k-nearest neighbors.

p Numeric vector of length one. Power for inverse-distance weighting.

rmax Numeric vector of length one. Maximum radius where to search for knn.

col_id Numeric vector of length one. ID of the column with the values to interpolate.

Details

This function use knnidw as workhorse function, so arguments k, p, and rmax are passed to it.

This method is based on Lang et al. (2010). In theory, interpolation requires a linear relation
between DNs and the amount of light reaching the sensor. To that end, photographs should be taken
in RAW format to avoid gamma correction (Lang et al. 2010). As a compromise solution, gbc can
be used.

The vignetting effect also hinders the linear relation between DNs and the amount of light reaching
the sensor. Please refer to Lang et al. (2010) for more details about the vignetting effect.

The use of k = 1 solves the linear dilemma from the theoretical point of view since no averaging is
taking place in the calculations. However, probably, it is best to use k greater than 1.

40 interpolate_sky_points

Default parameters are the ones used by Lang et al. (2010). The argument rmax should account
for between 15 to 20 degrees, but it is expressed in pixels units. So, image resolution and lens
projections should be taken into account to set this argument properly.

The argument g should be the same used to obtain sky_points. The result will be limited to the
cells with at least one pixel covered by the convex hull of the sky points.

Value

An object of class SpatRaster.

References

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fit_trend_surface(), fix_reconstructed_sky(), ootb_sky_reconstruction()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
bin <- ootb_obia(caim, z, a)

g <- sky_grid_segmentation(z, a, 10)
r <- gbc(caim$Blue*255)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_rl(r, z, a, sky_points, NULL)
sky <- interpolate_sky_points(sky_points$sky_points, g)
plot(sky)

#modify g if the goal is to get the whole sky
g <- !is.na(z)
sky <- interpolate_sky_points(sky_points$sky_points, g)
plot(sky)
plot(r/sky)

#restricted view canopy photo
path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path)
plot(caim)
r <- gbc(caim$Blue)
caim <- normalize(caim)

bin <- ootb_obia(caim)

https://doi.org/10.1016/j.agrformet.2009.08.001

lens 41

g <- chessboard(caim, 100)
plot(g)
sky_points <- extract_sky_points(r, bin, g)
sky_points <- extract_dn(r, sky_points)
head(sky_points)
sky <- interpolate_sky_points(sky_points, !is.na(r), col_id = 3)
plot(sky)
plot(r/sky)

End(Not run)

lens Lens database

Description

Database of lens projection functions and field of views.

Usage

lens(type = "equidistant", max_fov = FALSE)

Arguments

type Character vector of length one. The name of the lens.

max_fov Logical vector of length one. Use TRUE to return the maximum field of view in
degrees.

Details

In upward-looking leveled hemispherical photography, the zenith is the center of a circle whose
perimeter is the horizon. This is true only if the lens field of view is 180º. The relative radius is
the radius of concentric circles expressed as a fraction of the radius that belongs to the circle that
has the horizon as perimeter. The equidistant model, also called polar, is the most widely used as a
standard reference. Real lenses can approximate the projection models, but they always have some
kind of distortion. In the equidistant model, the relation between zenith angle and relative radius is
modeled with a straight line. Following Hemisfer software, this package uses a polynomial curve
to model lens distortion. A third-order polynomial is sufficient in most cases (Frazer et al. 2001).

Eventually, this will be a large database, but only the following lenses are available at the moment:

• equidistant: standard equidistant projection (Schneider et al. 2009).

• Nikon_FCE9: Nikon FC-E9 auxiliary lens (Díaz and Lencinas 2018)

• Nikkor_10.5_mm: AF DX Fisheye-Nikkor 10.5mm f/2.8G ED (Pekin and Macfarlane 2009)

• Olloclip: Auxiliary lens. Unpublished

https://www.schleppi.ch/patrick/hemisfer/

42 local_fuzzy_thresholding

Value

If max_fov is set to TRUE, it returns a numeric vector of length one, which is the lens maximum field
of view in degrees. Otherwise, it returns a numeric vector with the coefficients of the lens function.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001). “A comparison of digital and film fisheye
photography for analysis of forest canopy structure and gap light transmission.” Agricultural and
Forest Meteorology, 109(4), 249–263. doi:10.1016/s01681923(01)00274x.

Pekin B, Macfarlane C (2009). “Measurement of crown cover and leaf area index using digi-
tal cover photography and its application to remote sensing.” Remote Sensing, 1(4), 1298–1320.
doi:10.3390/rs1041298.

Schneider D, Schwalbe E, Maas H (2009). “Validation of geometric models for fisheye lenses.” IS-
PRS Journal of Photogrammetry and Remote Sensing, 64(3), 259–266. doi:10.1016/j.isprsjprs.2009.01.001.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
calibrate_lens(), expand_noncircular(), fisheye_to_equidistant(), fisheye_to_pano(),
test_lens_coef(), zenith_image()

Examples

lens("Nikon_FCE9")
lens("Nikon_FCE9", max_fov = TRUE)

local_fuzzy_thresholding

local fuzzy thresholding

Description

This function was first presented in Díaz and Lencinas (2015). It uses a threshold value as the
location parameter of a logistic membership function whose scale parameter depends on a variable,
here named mem. This dependence can be explained as follows: if the variable is equal to 1, then the
membership function is same as a threshold function because the scale parameter is 0; lowering the
variable increases the scale parameter, thus blurring the threshold because it decreases the steepness
of the curve. Since the variable is defined pixel by pixel, this should be considered as a local fuzzy
thresholding method.

Usage

local_fuzzy_thresholding(lightness, m, mem, thr = NULL, fuzziness = NULL)

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/s0168-1923%2801%2900274-x
https://doi.org/10.3390/rs1041298
https://doi.org/10.1016/j.isprsjprs.2009.01.001

local_fuzzy_thresholding 43

Arguments

lightness SpatRaster. A normalized greyscale image (see normalize).

m SpatRaster. A mask. For hemispherical photographs, check mask_hs.

mem SpatRaster. It is the scale parameter of the logistic membership function. Typi-
cally it is obtained with membership_to_color.

thr Numeric vector of length one. Location parameter of the logistic membership
function. Use NULL to estimate it automatically with thr_isodata.

fuzziness Numeric vector of length one. This number is a constant value that scales mem.
Use NULL to estimate it automatically as the midpoint between the maximum
and minimum values of lightness.

Details

Argument m can be used to affect the automatic estimation of thr and fuzziness.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package.

Value

An object of class SpatRaster with same pixel dimensions than caim. Depending on mem, changes
could be subtle; however, they should be in the direction of showing more contrast between the sky
and plant pixels than any of the individual bands from caim.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

See Also

Other Pre-processing Functions: enhance_caim(), gbc(), membership_to_color(), normalize()

Examples

Not run:
caim <- read_caim()
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
target_color <- sRGB(matrix(c(0.529, 0.808, 0.921), ncol = 3))
mem <- membership_to_color(caim, target_color)
m <- !is.na(z)
mem_thr <- local_fuzzy_thresholding(mean(caim), m, mem$membership_to_grey)
plot(mem_thr)

End(Not run)

https://doi.org/10.1109/lgrs.2015.2425931

44 masking

masking Image masking

Description

Image masking

Usage

masking(r, m, RGB = c(1, 0, 0))

Arguments

r SpatRaster. The image. Values should be normalized, see normalize. Only
methods for images with one or three layers have been implemented.

m SpatRaster. A mask. For hemispherical photographs, check mask_hs.

RGB Numeric vector of length three. RGB color code. Red is the default color.

Value

An object of class SpatRaster that essentially is r with areas where m is equal to zero painted in a
solid color. If r is a single layer image, then the layer is triplicated to allow the use of color.

See Also

mask_hs

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), read_bin(), read_caim(), write_bin(), write_caim()

Examples

Not run:
r <- read_caim()
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
m <- mask_hs(z, 20, 70) & mask_hs(a, 90, 180)
m <- as.logical(m)

masked_caim <- masking(normalize(r, 0, 255), m)
plotRGB(masked_caim * 255)

masked_bin <- masking(apply_thr(r$Blue, 125), m)
plotRGB(masked_bin * 255)

End(Not run)

mask_hs 45

mask_hs Mask hemisphere

Description

Given a zenith or azimuth image and angle restrictions, this function produces a mask.

Usage

mask_hs(r, from, to)

Arguments

r SpatRaster built with zenith_image or azimuth_image.
from, to angle in degrees, inclusive limits.

Value

An object of class SpatRaster with values 0 and 1.

See Also

masking

Other Segmentation Functions: chessboard(), mask_sunlit_canopy(), polar_qtree(), qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
z <- zenith_image(1000, lens())
a <- azimuth_image(z)
m1 <- mask_hs(z, 20, 70)
plot(m1)
m2 <- mask_hs(a, 330,360)
plot(m2)
plot(m1 & m2)
plot(m1 | m2)

if you want 15 degress at each side of 0
m1 <- mask_hs(a, 0, 15)
m2 <- mask_hs(a, 345, 360)
plot(m1 | m2)

better use this
plot(!is.na(z))
instead of this
plot(mask_hs(z, 0, 90))

End(Not run)

46 mask_sunlit_canopy

mask_sunlit_canopy Mask sunlit canopy

Description

It is a wrapper function around membership_to_color. It masks pixels that are likely sunlit canopy.

Usage

mask_sunlit_canopy(caim, m = NULL)

Arguments

caim SpatRaster. The return of a call to read_caim.

m SpatRaster. A mask. For hemispherical photographs, check mask_hs. Default
(NULL) is the equivalent to enter !is.na(caim$Red). See the Details section in
local_fuzzy_thresholding to understand how this argument can modify the
output.

Value

An object of class SpatRaster with values 0 and 1.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), polar_qtree(), qtree(), rings_segmentation(),
sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
caim <- read_caim() %>% normalize()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
m <- !is.na(z)
sunlit_canopy <- mask_sunlit_canopy(caim, m)
plot(sunlit_canopy)

End(Not run)

membership_to_color 47

membership_to_color Compute the membership to a target color

Description

This function was first presented in Díaz and Lencinas (2015). It computes the degree of member-
ship to a color with two Gaussian membership functions and the dimensions a* and b* from the
CIE L*a*b* color space. To be clear, the lightness dimension is not considered in the calculations.

Usage

membership_to_color(caim, target_color, sigma = NULL)

Arguments

caim SpatRaster. The return of a call to read_caim.

target_color color.

sigma Numeric vector of length one. Use NULL (default) to estimate it automatically
as the euclidean distance between target_color and grey in the CIE L*a*b*
color space.

Details

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package.

Value

It returns an object from the class SpatRaster. First layer is the membership to the target color.
Second layer is the membership to grey. Both memberships are calculated with same sigma.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

See Also

Other Pre-processing Functions: enhance_caim(), gbc(), local_fuzzy_thresholding(), normalize()

Examples

Not run:
caim <- read_caim()
plot(caim)
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
mem <- membership_to_color(caim, sRGB(0.25, 0.75, 0))

https://doi.org/10.1109/lgrs.2015.2425931

48 normalize

plot(mem)

End(Not run)

normalize Normalize data

Description

Normalize numeric and raster data.

Usage

normalize(r, mn = NULL, mx = NULL, force_range = FALSE)

Arguments

r SpatRaster or numeric vector.

mn Numeric vector of length one. Minimum expected value. Default is equivalent
to enter the minimum value from r.

mx Numeric vector of length one. Maximum expected value. Default is equivalent
to enter the maximum value from r.

force_range Logical vector of length one. If it is TRUE, the range is forced to be between 0
and 1 by flattening values found below and above those limits.

Details

Normalize data laying between mn and mx to the range 0 to 1. Data greater than mx get values greater
than 1 in a proportional fashion. Conversely, data less than mn get values less than 0.This function
can be used for linear stretching of the histogram.

Value

An object from the same class as r with values from r linearly rescaled to make mn equal to zero
and mx equal to one. Therefore, if mn and mx do not match the actual minimum and maximum from
r, then the output will not cover the 0-to-1 range and may be outside that range if force_range is
set to FALSE.

See Also

Other Pre-processing Functions: enhance_caim(), gbc(), local_fuzzy_thresholding(), membership_to_color()

Examples

normalize(read_caim(), 0, 255)

obia 49

obia Object-based image analysis of canopy photographs

Description

Object-based image analysis targeting the canopy silhouette.

Usage

obia(r, z = NULL, a = NULL, bin, segmentation, gf_mn = 0.2, gf_mx = 0.95)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

bin SpatRaster. This should be a working binarization of r without gross errors.

segmentation SpatRaster built with polar_qtree or qtree.

gf_mn, gf_mx Numeric vector of length one. The minimum/maximum gap fraction that a seg-
ment should comply with to be considered as one containing foliage.

Details

This method was first presented in Díaz and Lencinas (2015). This version is simpler since it relies
on a better working binarized image. The version from 2015 uses an automatic selection of samples
followed by a knn classification of segments containing foliage. This version uses de gap fraction
extracted from bin to classify foliage by defining upper and lower limits through the arguments
gf_mx and gf_mn.

This method produces a synthetic layer by computing the ratio of r to the maximum value of r
at the segment level. This process is carried out only on the pixels covered by the classes foliage
and sky– the latter is defined by bin equal to one. To avoid spurious values, the quantile 0.9 is
computed instead of the maximum. Pixels not belonging to the class foliage return as NA.

Default values of z and a allows the processing of restricted view photographs.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package.

Value

SpatRaster.

References

Díaz GM, Lencinas JD (2015). “Enhanced gap fraction extraction from hemispherical photogra-
phy.” IEEE Geoscience and Remote Sensing Letters, 12(8), 1785–1789. doi:10.1109/lgrs.2015.2425931.

https://doi.org/10.1109/lgrs.2015.2425931

50 ootb_mblt

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), find_sky_pixels(),
ootb_mblt(), ootb_obia(), regional_thresholding(), thr_image(), thr_isodata()

Examples

Not run:
caim <- read_caim()
r <- caim$Blue %>% gbc()
caim <- normalize(caim)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
m <- !is.na(z)
m2 <- !mask_sunlit_canopy(caim, m)
ecaim <- enhance_caim(caim, m)
bin <- apply_thr(ecaim, thr_isodata(ecaim[m2]))

seg <- polar_qtree(caim, z, a)
synth <- obia(r, z, a, bin, seg)
plot(synth)
foliage <- !is.na(synth)
hist(synth[foliage])
synth <- terra::cover(synth, bin)
plot(synth)
bin_obia <- apply_thr(synth, thr_isodata(synth[foliage]))
plot(bin - bin_obia)
plot(bin_obia)

End(Not run)

ootb_mblt Out-of-the-box model-based local thresholding

Description

Out-of-the-box version of the model-based local thresholding (MBLT) algorithm.

Usage

ootb_mblt(r, z, a, bin = NULL, fix_cs_sky = FALSE)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

ootb_mblt 51

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely to be pure sky pixels.

fix_cs_sky Logical vector of length one. If it is TRUE, fix_reconstructed_sky is used to
fix the cone-shaped sky.

Details

This function is a hard-coded version of a MBLT pipeline that starts producing a working bina-
rized image and ends with a refined binarized image. The pipeline combines these main func-
tions find_sky_pixels–if bin is NULL–, fit_coneshaped_model, find_sky_pixels_nonnull,
and fit_trend_surface. The code can be easily inspected by calling ootb_mblt–no parenthesis.
Advanced users can use that code as a template.

The MBLT algorithm was first presented in Díaz and Lencinas (2018). The version presented here
differs from that in the following main aspects:

• intercept is set to 0, slope to 1, and w to 0.5

• This version implements a regional thresholding approach as the first step instead of a global
one. Please refer to find_sky_pixels.

• It does not use asynchronous acquisition under the open sky. The cone-shaped model (fit_coneshaped_model)
run without a filling source and the result of it is used as filling source for trend surface fitting
(fit_trend_surface).

• find_sky_pixels_nonnull is used to update the first working binarized image, after fit_coneshaped_model.

This function searches for black objects against a light background. When regular canopy hemi-
spherical images are provided as input, the algorithm will find dark canopy elements against a bright
sky almost everywhere in the picture and, therefore, the result will fit user expectations. However,
if a hemispherical photograph taken under the open sky is provided, this algorithm would be still
searching black objects against a light background, so the darker portions of the sky will be taken
as objects, i.e., canopy. As a consequence, this will not fit users expectations since they are looking
for the classes Gap and No-gap, no matter if one of those are not in the picture itself. This kind of
error could happen with photographs of open forests for the same working principle.

If you use this function in your research, please cite Díaz and Lencinas (2018) in addition to this
package.

Value

Object from class list containing the binarized image (named bin) and the reconstructed skies
(named sky_cs and sky_s).

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), find_sky_pixels(),
obia(), ootb_obia(), regional_thresholding(), thr_image(), thr_isodata()

https://doi.org/10.1139/cjfr-2018-0006

52 ootb_obia

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
r[is.na(z)] <- 0 #because FOV > 180
bin <- ootb_mblt(r, z, a)
plot(bin$bin)

ratio <- r/bin$sky_s
ratio <- normalize(ratio, 0, 1, TRUE)
Alternative 1
plot(apply_thr(ratio, thr_isodata(ratio[!is.na(z)])))

Alternative 2
g <- sky_grid_segmentation(z, a, 10)
plot(defuzzify(ratio, g))

##Note: In this example, differences are small, but they can be notorious.

End(Not run)

ootb_obia Out-of-the-box object-based image analysis of canopy photographs

Description

Out-of-the-box version of methods first presented in Díaz and Lencinas (2015).

Usage

ootb_obia(caim, z = NULL, a = NULL, m = NULL, sky_blue = NULL)

Arguments

caim SpatRaster. The return of a call to read_caim.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

m SpatRaster. Default (NULL) is the equivalent to enter !is.na(z) for hemispher-
ical photography, or enter !is.na(caim$Red) for restricted view photography.

sky_blue color. Is the target_color argument to be passed to membership_to_color.
Default (NULL) is the equivalent to enter sRGB(0.1, 0.4, 0.8)–the HEX color
code is #1A66CC, it can be entered into a search engine (such as Mozilla Fire-
fox) to see a color swatch.

ootb_obia 53

Details

This function is a hard-coded version of a pipeline that combines these main functions mask_sunlit_canopy,
enhance_caim, polar_qtree/qtree, and obia. The code can be easily inspected by calling ootb_obia
–no parenthesis. Advanced users can use that code as a template.

Pixels from the synthetic layer returned by obia that lay between 0 and 1 are assigned to the class
plant only if they are:

• 0 after defuzzify with a sky grid segmentation of 10 degrees.

• 0 after apply_thr with a threshold computed with thr_isodata.

• Not exclusively surrounded by sky pixels.

Default values of z and a allows the processing of restricted view photographs.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package.

If you use this function in your research, please cite Díaz and Lencinas (2015) in addition to this
package.

Value

An object of class SpatRaster with values 0 and 1.

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), find_sky_pixels(),
obia(), ootb_mblt(), regional_thresholding(), thr_image(), thr_isodata()

Examples

Not run:
#circular hemispherical photo
path <- system.file("external/b4_2_5724.jpg", package = "rcaiman")
caim <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2) %>%

normalize()
z <- zenith_image(1490, lens("Nikon_FCE9"))
a <- azimuth_image(z)

bin <- ootb_obia(caim, z, a)
plot(bin)

to compare
blue <- gbc(caim$Blue*255)
plot(apply_thr(blue, thr_isodata(blue[!is.na(z)])))
plot(blue, col = seq(0,1,1/255) %>% grey())

#hemispherical photo from a smartphone
path <- system.file("external/APC_0581.jpg", package = "rcaiman")
caim <- read_caim(path) %>% normalize()
z <- zenith_image(2132/2, lens("Olloclip"))
a <- azimuth_image(z)

54 ootb_sky_reconstruction

zenith_colrow <- c(1063, 771)/2
caim <- expand_noncircular(caim, z, zenith_colrow) %>% normalize()
m <- !is.na(caim$Red) & !is.na(z)
caim[!m] <- 0

bin <- ootb_obia(caim, z, a)
plot(bin)

to compare
blue <- gbc(caim$Blue*255)
plot(apply_thr(blue, thr_isodata(blue[m])))
plot(blue, col = seq(0,1,1/255) %>% grey())

#restricted view canopy photo
path <- system.file("external/APC_0020.jpg", package = "rcaiman")
caim <- read_caim(path) %>% normalize()

bin <- ootb_obia(caim)
plot(bin)

to compare
blue <- gbc(caim$Blue*255)
plot(apply_thr(blue, thr_isodata(blue[])))
plot(blue, col = seq(0,1,1/255) %>% grey())

End(Not run)

ootb_sky_reconstruction

Out-of-the-box sky reconstruction

Description

Build an above canopy image from a single below canopy image.

Usage

ootb_sky_reconstruction(r, z, a, bin, filling_source = NULL)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

bin SpatRaster. This should be a preliminary binarization of r useful for masking
pixels that are very likely to be pure sky pixels.

ootb_sky_reconstruction 55

filling_source SpatRaster. An actual or reconstructed above-canopy image to complement the
sky pixels detected through the gaps of r. If an incomplete above-canopy image
is available, non-sky pixels should be turned NA or they will be considered as
sky pixels erroneously. A photograph taken immediately after or before taking
r under the open sky with the same equipment and configuration is a very good
option but not recommended under fleeting clouds. The orientation relative to
the North must be the same as for r. If it is set to NULL (default), only sky pixels
from r will be used as input.

Details

This function is a hard-coded version of a pipeline that uses these main functions fit_cie_sky_model
and interpolate_sky_points. The code can be easily inspected by calling ootb_sky_reconstruction–
no parenthesis. Advanced users could use that code as a template.

This pipeline is based on Lang et al. (2010). The main differences between the original method by
Lang et al. (2010) and the one implemented here are:

• it is fully automatic,

• the residuals of the CIE sky model (residuals = model − data) are interpolated instead of
the sky digital numbers (the data), and

• the final sky reconstruction is obtained by subtracting the interpolated residuals to the CIE sky
model instead of by calculating a weighted average parameterized by the user.

The recommended input for this function is data pre-processed with the HSP software package
(Lang et al. 2013). Please, refer to write_sky_points for additional details about HSP and refer
to fit_cie_sky_model and interpolate_sky_points to know why the HSP pre-processing is
convenient.

Providing a filling source triggers an alternative pipeline in which the sky is fully reconstructed
with interpolate_sky_points after a dense sampling (1 × 1 degree cells), which is supported
by the fact that sky digital numbers will be available for almost every pixel, either from r gaps or
from the filling source–an exception is a filling source with plenty of NA values, which should not
be provided.

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests/ Metsa võrastiku
läbipaistvuse mõõtmine digitaalsete poolsfäärikaamerate abil.” Forestry Studies, 59(1), 13–27.
doi:10.2478/fsmu20130008.

Lang M, Kuusk A, Mõttus M, Rautiainen M, Nilson T (2010). “Canopy gap fraction estimation
from digital hemispherical images using sky radiance models and a linear conversion method.”
Agricultural and Forest Meteorology, 150(1), 20–29. doi:10.1016/j.agrformet.2009.08.001.

See Also

Other Sky Reconstruction Functions: cie_sky_model_raster(), fit_cie_sky_model(), fit_coneshaped_model(),
fit_trend_surface(), fix_reconstructed_sky(), interpolate_sky_points()

https://doi.org/10.2478/fsmu-2013-0008
https://doi.org/10.1016/j.agrformet.2009.08.001

56 polar_qtree

Examples

Not run:
#JPEG file
caim <- read_caim()
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
r <- gbc(caim$Blue)
bin <- ootb_obia(caim %>% normalize(), z, a)
bin <- bin & mask_hs(z, 0, 85)
sky <- ootb_sky_reconstruction(r, z, a, bin)
sky <- normalize(sky, 0, 1, TRUE)
plot(sky)
sky <- ootb_sky_reconstruction(r, z, a, bin, sky)

ratio <- r/sky
plot(ratio)
hist(ratio)
ratio <- normalize(ratio, 0, 1, TRUE)
g <- sky_grid_segmentation(z, a, 10)
plot(defuzzify(ratio, g))

#preprocessed with HSP
path <- system.file("external/DSCN6342.pgm", package = "rcaiman")
r <- read_caim(path) %>% normalize()
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
bin <- find_sky_pixels(r, z, a)
sky <- ootb_sky_reconstruction(r, z, a, bin)
bin <- apply_thr(r/sky, 0.5)
sky <- ootb_sky_reconstruction(r, z, a, bin, sky)
ratio <- r/sky
ratio[is.na(ratio)] <- 0
ratio <- normalize(ratio, 0, 1, force_range = TRUE)
plot(ratio)
g <- sky_grid_segmentation(z, a, 10)
plot(defuzzify(ratio, g))

End(Not run)

polar_qtree Quad-tree segmentation in the polar space

Description

The quad-tree segmentation algorithm is a top-down process that makes recursive divisions in four
equal parts until a condition is satisfied and stops locally. The usual implementation of the quad-tree
algorithm is based on the raster structure and this is why the result are squares of different sizes.
This method implements the quad-tree segmentation in a polar space, so the segments are shaped

polar_qtree 57

like windshields, though some of them will look elongated in height. The pattern is two opposite
and converging straight sides and two opposite and parallel curvy sides.

Usage

polar_qtree(r, z, a, scale_parameter = 0.2)

Arguments

r SpatRaster.

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.
scale_parameter

Numeric vector of length one. Quad-tree is a top-down method. This param-
eter controls the stopping condition. Therefore, it allows controlling the size
of the resulting segments. Ultimately, segments sizes will depend on both this
parameter and the heterogeneity of r.

Details

The algorithm splits segments of 30 degrees resolution into four sub-segments and calculates the
standard deviation of the pixels from r delimited by each of those segments. The splitting process
stops locally if the sum of the standard deviation of the sub-segments minus the standard deviation
of the parent segment (named delta) is less or equal than the scale_parameter. If r has more than
one layer, delta is calculated separately and delta mean is used to evaluate the stopping condition.

Value

A single layer image of the class SpatRaster with integer values.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
caim <- read_caim()
plot(caim)
caim <- normalize(caim, 0, 255)
z <- zenith_image(ncol(caim), lens("Nikon_FCE9"))
a <- azimuth_image(z)
seg <- polar_qtree(caim, z, a)
plot(seg)
plot(extract_feature(caim$Blue, seg))

End(Not run)

58 qtree

qtree Quad-tree segmentation

Description

The quad-tree segmentation algorithm is a top-down process that makes recursive divisions in four
equal parts until a condition is satisfied and stops locally. This is the usual implementation of the
quad-tree algorithm, so it produces squared segments of different sizes. This particular implemen-
tation allows up to five sizes.

Usage

qtree(r, scale_parameter = 0.2)

Arguments

r SpatRaster.
scale_parameter

Numeric vector of length one. Quad-tree is a top-down method. This param-
eter controls the stopping condition. Therefore, it allows controlling the size
of the resulting segments. Ultimately, segments sizes will depend on both this
parameter and the heterogeneity of r.

Details

The algorithm starts splitting the entire image into large squared segments following, depending on
the aspect ratio, grids going from 4×4 to 1×4/4×1; then, splits each segment into four sub-segments
and calculates the standard deviation of the pixels from r delimited by each of those segments. The
splitting process stops locally if the sum of the standard deviation of the sub-segments minus the
standard deviation of the parent segment (named delta) is less or equal than the scale_parameter.
If r has more than one layer, delta is calculated separately and delta mean is used to evaluate the
stopping condition.

Value

A single layer image of the class SpatRaster with integer values.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
rings_segmentation(), sectors_segmentation(), sky_grid_segmentation()

Examples

Not run:
caim <- read_caim()
plot(caim)
caim <- normalize(caim, 0, 255)

rcaiman 59

seg <- qtree(caim, scale_parameter = 0.5)
plot(caim$Blue)
plot(extract_feature(caim$Blue, seg))
plot(extract_feature(seg, seg, length))

End(Not run)

rcaiman rcaiman: An R package for CAnopy IMage ANalysis

Description

Solutions for binarizing canopy images, particularly hemispherical photographs, including non-
circular ones, such as certain pictures taken with auxiliary fisheye lens attached to smartphones.

Binarization

apply_thr, defuzzify, find_sky_pixels_nonnull, find_sky_pixels, obia, ootb_mblt, ootb_obia,
regional_thresholding, and thr_image.

HSP

read_manual_input, read_opt_sky_coef, row_col_from_zenith_azimuth, write_sky_points,
write_sun_coord, and zenith_azimuth_from_row_col.

Lens

azimuth_image, calc_diameter, calc_zenith_raster_coord, calibrate_lens, expand_noncircular,
fisheye_to_equidistant, fisheye_to_pano, lens, test_lens_coef, and zenith_image.

Pre-processing

enhance_caim, gbc, local_fuzzy_thresholding, membership_to_color, and normalize.

Segmentation

chessboard, mask_hs, mask_sunlit_canopy, polar_qtree, qtree, rings_segmentation, sectors_segmentation,
and sky_grid_segmentation.

Sky reconstruction

extract_sun_coord, fit_cie_sky_model, fit_coneshaped_model, fit_trend_surface, fix_reconstructed_sky,
interpolate_sky_points, and ootb_sky_reconstruction.

Tools

colorfulness, extract_feature, extract_dn, extract_rl, extract_sky_points, masking,
read_bin, read_caim, write_bin, and write_caim.

60 read_bin

Batch Processing

Batch processing can be easily performed with standard R programming. Below is an example that
can be used as a template.

require(rcaiman)

input_folder <- "c:/Users/janedoe/pics/"
output_folder <- "c:/Users/janedoe/bins/"
files <- dir(input_folder, full.names = TRUE)

for (i in 1:length(files)) {
caim <- read_caim(file.path(files[i]))
blue <- gbc(caim$Blue)
bin <- apply_thr(blue, thr_isodata(blue[]))
write_bin(bin, file.path(output_folder, basename(files[i])))

}

read_bin Read binarized images

Description

Wrapper functions for rast.

Usage

read_bin(path)

Arguments

path Character vector of length one. Path to a binarized image.

Value

An object from class SpatRaster.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), masking(), read_caim(), write_bin(), write_caim()

read_caim 61

Examples

Not run:
z <- zenith_image(1000, lens())
m <- !is.na(z)
my_file <- file.path(tempdir(), "mask.tif")
write_bin(m, my_file)
m_from_disk <- read_bin(my_file)
plot(m - m_from_disk)

End(Not run)

read_caim Read a canopy image from a file

Description

Wrapper function for rast.

Usage

read_caim(path = NULL, upper_left = NULL, width = NULL, height = NULL)

Arguments

path Character vector of length one. Path to an image, including file extension. The
function will return a data example if no arguments are provided.

upper_left An integer vector of length two.

width, height An integer vector of length one.

Details

Run read_caim() to obtain an example of a hemispherical photo taken in non-diffuse light con-
ditions in a Nothofagus pumilio forest with a FC-E9 auxiliary lens attached to a Nikon Coolpix
5700.

Since this function aims to read born-digital color photographs, RGB-JPEG and RGB-TIFF are ex-
pected as input. Use upper_left, width, and height to read a region of the file. The upper_left
parameter indicates the pixels coordinates of the upper left corner of the region of interest (ROI).
These coordinates should be in the raster coordinates system, which works like a spreadsheet, i.e,
when you go down through the vertical axis, the row number increases (IMPORTANT: column
and row must be provided instead of row and column as in objects from the class data.frame
and others alike). The width and height parameters indicate the size of the boxy ROI. I recom-
mend using ‘ImageJ’ to obtain these parameters, but any image editor can be used, such as ‘GIMP’
or ‘Adobe Photoshop’.

TIP: For obtaining upper_left, width, and height, open the image on the Fiji distro of ImageJ,
draw a rectangular selection, and go to Edit>Selection>Specify. The same workflow may work with
other distros.

https://imagej.nih.gov/ij/

62 read_manual_input

Value

An object from class SpatRaster with its layers named Red, Green, and Blue.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), masking(), read_bin(), write_bin(), write_caim()

Examples

This is the example image
r <- read_caim()
plotRGB(r)

This is also the example
path <- system.file("external/b4_2_5724.jpg", package = "rcaiman")
the zenith raster coordinates can be easily transformed to the "upper_left"
argument by subtracting from it the radius expressed in pixels.
zenith_colrow <- c(1280, 960)
diameter_px <- 1490
r <- read_caim(path,

upper_left = zenith_colrow - diameter_px/2,
width = diameter_px,
height = diameter_px)

plotRGB(r)

A pre-processed image
path <- system.file("external/DSCN6342.pgm", package = "rcaiman")
r <- read_caim(path)
plot(r)

read_manual_input Read manual input

Description

Read manual input stored in an HSP project.

Usage

read_manual_input(path_to_HSP_project, img_name)

Arguments

path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

read_opt_sky_coef 63

Details

Refer to the Details section of function write_sky_points.

Value

A list of numeric vectors named weight, max_points, angle, point_radius, sun_coord, sky_points
and zenith_dn.

See Also

Other HSP Functions: read_opt_sky_coef(), row_col_from_zenith_azimuth(), write_sky_points(),
write_sun_coord(), zenith_azimuth_from_row_col()

read_opt_sky_coef Read optimized sky coefficients

Description

Read optimized CIE sky coefficients stored in an HSP project.

Usage

read_opt_sky_coef(path_to_HSP_project, img_name)

Arguments

path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

Refer to the Details section of function write_sky_points.

Value

Numeric vector of length five.

See Also

cie_sky_model_raster

Other HSP Functions: read_manual_input(), row_col_from_zenith_azimuth(), write_sky_points(),
write_sun_coord(), zenith_azimuth_from_row_col()

64 regional_thresholding

regional_thresholding Regional thresholding

Description

Regional thresholding of greyscale images.

Usage

regional_thresholding(
r,
segmentation,
method,
intercept = NULL,
slope = NULL,
prob = NULL

)

Arguments

r SpatRaster. A normalized greyscale image. Typically, the blue channel ex-
tracted from a canopy photograph. Please see read_caim and normalize.

segmentation SpatRaster. The result of segmenting r. Probably, rings_segmentation will
be the most used for fisheye images.

method Character vector of length one. See details for current options.
intercept, slope

Numeric vector of length one. These are linear function coefficients–see section
Details in thr_image.

prob Numeric vector of length one. Probability for quantile calculation.

Details

Methods currently implemented are:

• Diaz2018: method presented in Díaz and Lencinas (2018) applied regionally. If this method is
selected, the arguments intercept, slope, and prob should be provided. It works segment-
wise extracting the digital numbers (dns) per segment and passing them to quantile(dns,
prob), which aggregated result (x) is in turn passed to thr_image(x,intercept, slope).
Finally, this threshold image is applied to obtain a binarized image.

• Methods from autothresholdr package: this function can call methods from auto_thresh.
Use "IsoData" to use the algorithm by Ridler and Calvard (1978), which was recommended
by Jonckheere et al. (2005).

• Method isodata from this package: Use "thr_isodata" to use thr_isodata.

Value

An object of class SpatRaster with values 0 and 1.

rings_segmentation 65

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction
estimation of forests from digital hemispherical photography.” Agricultural and Forest Meteorol-
ogy, 132(1-2), 96–114. doi:10.1016/j.agrformet.2005.06.003.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” IEEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630–632. doi:10.1109/tsmc.1978.4310039.

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), find_sky_pixels(),
obia(), ootb_mblt(), ootb_obia(), thr_image(), thr_isodata()

Examples

Not run:
path <- system.file("external/DSCN4500.JPG", package = "rcaiman")
r <- read_caim(path, c(1280, 960) - 745, 745 * 2, 745 * 2)
blue <- gbc(r$Blue)
z <- zenith_image(ncol(r), lens("Nikon_FCE9"))
rings <- rings_segmentation(z, 10)
bin <- regional_thresholding(blue, rings, "Diaz2018", -8, 0.5, 1)
plot(bin)
bin <- regional_thresholding(blue, rings, "thr_isodata")
plot(bin)

End(Not run)

rings_segmentation Rings segmentation

Description

Segmenting an hemispherical view by slicing the zenith angle from zero to 90º in equals intervals.

Usage

rings_segmentation(z, angle_width, return_angle = FALSE)

Arguments

z SpatRaster built with zenith_image.

angle_width Numeric vector of length one. Angle in degrees able to divide the angle range
into a whole number of segments.

https://doi.org/10.1139/cjfr-2018-0006
https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1109/tsmc.1978.4310039

66 row_col_from_zenith_azimuth

return_angle Logical vector of length one. If it is FALSE, all the pixels that belong to a segment
are labeled with an ID number. Otherwise, the angle mean of the segment is
assigned to the pixels.

Value

An object from the class SpatRaster with segments shaped like concentric rings.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
qtree(), sectors_segmentation(), sky_grid_segmentation()

Examples

z <- zenith_image(1490, lens())
rings <- rings_segmentation(z, 15)
plot(rings == 1)

row_col_from_zenith_azimuth

Row and col numbers from zenith and azimuth angles

Description

Row and col numbers from zenith and azimuth angles

Usage

row_col_from_zenith_azimuth(z, za, lens_coef)

Arguments

z SpatRaster built with zenith_image.
za Numeric vector of length two. Zenith and azimuth angles in degrees.
lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

Value

Numeric vector of length two.

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), write_sky_points(),
write_sun_coord(), zenith_azimuth_from_row_col()

Examples

z <- zenith_image(1000, lens())
row_col_from_zenith_azimuth(z, c(45, 270), lens())

sectors_segmentation 67

sectors_segmentation Sectors segmentation

Description

Segmenting a hemispherical view by slicing the azimuth angle from zero to 360º in equals intervals.

Usage

sectors_segmentation(a, angle_width, return_angle = FALSE)

Arguments

a SpatRaster built with azimuth_image.

angle_width Numeric vector of length one. Angle in degrees able to divide the angle range
into a whole number of segments.

return_angle Logical vector of length one. If it is FALSE, all the pixels that belong to a segment
are labeled with an ID number. Otherwise, the angle mean of the segment is
assigned to the pixels.

Value

An object from the class SpatRaster with segments shaped like pizza slices.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
qtree(), rings_segmentation(), sky_grid_segmentation()

Examples

z <- zenith_image(1490, lens())
a <- azimuth_image(z)
sectors <- sectors_segmentation(a, 15)
plot(sectors == 1)

sky_grid_segmentation Sky grid segmentation

Description

Segmenting the hemisphere view into segments of equal angular resolution for both zenith and
azimuth angles.

68 sky_grid_segmentation

Usage

sky_grid_segmentation(z, a, angle_width, sequential = FALSE)

Arguments

z SpatRaster built with zenith_image.

a SpatRaster built with azimuth_image.

angle_width Numeric vector of length one. It should be 30, 15,10, 7.5, 6, 5, 3.75, 3,
2.5, 1.875, 1 or 0.5 degrees. This constrain is rooted in the requirement of a
value able to divide both the 0 to 360 and 0 to 90 ranges into a whole number of
segments.

sequential Logical vector of length one. If it is TRUE, the segments are labeled with se-
quential numbers. By default (FALSE), labeling numbers are not sequential (see
Details).

Details

Intersecting rings with sectors makes a grid in which each cell is a portion of the hemisphere. Each
pixel of the grid is labeled with an ID that codify both ring and sector IDs. For example, a grid with
a regular interval of one degree has segment from 1001 to 360090. This numbers are calculated
with: sectorID * 1000 + ringsID, where sectorID is the ID number of the sector and ringsID is
the ID number of the ring.

Value

An object from the class SpatRaster with segments shaped like windshields, though some of them
will look elongated in height. The pattern is two opposite and converging straight sides and two
opposite and parallel curvy sides.

See Also

Other Segmentation Functions: chessboard(), mask_hs(), mask_sunlit_canopy(), polar_qtree(),
qtree(), rings_segmentation(), sectors_segmentation()

Examples

z <- zenith_image(1490, lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 15)
plot(g == 24005)
Not run:
g <- sky_grid_segmentation(z, a, 15, sequential = TRUE)
col <- terra::unique(g) %>% nrow() %>% rainbow() %>% sample()
plot(g, col = col)

End(Not run)

test_lens_coef 69

test_lens_coef Test lens projection functions

Description

Test if a lens projection function will work between the 0-to-1 range.

Usage

test_lens_coef(lens_coef)

Arguments

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

Value

Returns invisible(TRUE) and print "Test passed" if all tests pass, otherwise throws an error.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
calibrate_lens(), expand_noncircular(), fisheye_to_equidistant(), fisheye_to_pano(),
lens(), zenith_image()

Examples

test_lens_coef(lens("Nikon_FCE9"))
test_lens_coef(2 / pi)

thr_image Threshold image

Description

Transform background digital number into threshold values.

Usage

thr_image(dn, intercept, slope)

70 thr_image

Arguments

dn Numeric vector or SpatRaster. Digital number of the background. These values
should be normalized and, if they are extracted from a JPEG image, gamma
back corrected.

intercept, slope

Numeric vector of length one. These are linear function coefficients–see section
Details in thr_image.

Details

This function transforms background digital numbers into threshold values by means of the Equa-
tion 1 from Díaz and Lencinas (2018), which is a linear function with the slope modified by a
weighting parameter. This simple function was found by studying canopy models, also known
as targets, which are perforated surfaces made of a rigid and dark material. These models were
backlighted with homogeneous lighting, photographed with a Nikon Coolpix 5700 set to acquire in
JPEG format, and those images were gamma back corrected with a default gamma value equal to
2.2 (see gbc). Results clearly shown that the optimal threshold value was linearly related with
the background digital number, shifting the aim from finding the optimal threshold to obtain-
ing the background DN as if the canopy was not there. Functions fit_coneshaped_model and
fit_trend_surface address that topic.

It is worth noting that Equation 1 was developed with 8-bit images, so calibration of new coefficient
should be done in the 0 to 255 domain since that is what thr_image expect, although the input dn
should be normalized. The latter was a design decision aiming to harmonize the whole package,
although it might sound counter intuitive.

To apply the weighting parameter (w) from Equation 1, just provide the argument slope as slope×
w.

Type thr_image–no parenthesis–in the console to inspect the code, which is very simple to follow.

Value

An object of the same class and dimensions than dn.

References

Díaz GM, Lencinas JD (2018). “Model-based local thresholding for canopy hemispherical photog-
raphy.” Canadian Journal of Forest Research, 48(10), 1204–1216. doi:10.1139/cjfr20180006.

See Also

normalize, gbc, apply_thr and regional_thresholding.

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), find_sky_pixels(),
obia(), ootb_mblt(), ootb_obia(), regional_thresholding(), thr_isodata()

Examples

thr_image(gbc(125), -8, 1)

https://doi.org/10.1139/cjfr-2018-0006

thr_isodata 71

thr_isodata Threshold calculated with the isodata method

Description

Threshold calculated with the algorithm by Ridler and Calvard (1978), which was recommended
by Jonckheere et al. (2005).

Usage

thr_isodata(x)

Arguments

x Numeric vector or a single-column matrix or data.frame able to be coerced to
numeric.

Details

The implementation is based on the IsoData method of Auto Threshold ImageJ plugin by Gabriel
Landini, which is now available in the ’autothresholdr’ package (auto_thresh). However, I found
this implementarion more versatile since it is not restricted to an 8-bit input.

Value

Numeric vector of length one.

References

Jonckheere I, Nackaerts K, Muys B, Coppin P (2005). “Assessment of automatic gap fraction es-
timation of forests from digital hemispherical photography.” Agricultural and Forest Meteorology,
132(1-2), 96–114. doi:10.1016/j.agrformet.2005.06.003.

Ridler TW, Calvard S (1978). “Picture thresholding using an iterative selection method.” IEEE
Transactions on Systems, Man, and Cybernetics, 8(8), 630–632. doi:10.1109/tsmc.1978.4310039.

See Also

Other Binarization Functions: apply_thr(), find_sky_pixels_nonnull(), find_sky_pixels(),
obia(), ootb_mblt(), ootb_obia(), regional_thresholding(), thr_image()

Examples

caim <- read_caim()
r <- gbc(caim$Blue)
thr <- thr_isodata(values(r))
bin <- apply_thr(r, thr)
plot(bin)

https://imagej.net/plugins/auto-threshold#IsoData
https://imagej.net/plugins/auto-threshold#IsoData
https://doi.org/10.1016/j.agrformet.2005.06.003
https://doi.org/10.1109/tsmc.1978.4310039

72 write_bin

write_bin Write binarized images

Description

Wrapper functions for writeRaster.

Usage

write_bin(bin, path)

Arguments

bin SpatRaster.

path Character vector of length one. Path for writing the image.

Value

No return value. Called for side effects.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), masking(), read_bin(), read_caim(), write_caim()

Examples

Not run:
z <- zenith_image(1000, lens())
m <- !is.na(z)
my_file <- file.path(tempdir(), "mask")
write_bin(m, my_file)
my_file <- as.filename(my_file) %>%

insert(., ext = "tif", replace = TRUE) %>%
as.character()

m_from_disk <- read_bin(my_file)
plot(m - m_from_disk)

End(Not run)

write_caim 73

write_caim Write canopy image

Description

Wrapper function for writeRaster.

Usage

write_caim(caim, path, bit_depth)

Arguments

caim SpatRaster.

path Character vector of length one. Path for writing the image.

bit_depth Numeric vector of length one.

Value

No return value. Called for side effects.

See Also

Other Tool Functions: colorfulness(), defuzzify(), extract_dn(), extract_feature(), extract_rl(),
extract_sky_points(), masking(), read_bin(), read_caim(), write_bin()

Examples

Not run:
caim <- read_caim() %>% normalize(., 0, 255)
write_caim(caim * 2^8, file.path(tempdir(), "test_8bit"), 8)
write_caim(caim * 2^16, file.path(tempdir(), "test_16bit"), 16)

End(Not run)

write_sky_points Write sky points

Description

Create a special file to interface with the HSP software.

Usage

write_sky_points(sky_points, path_to_HSP_project, img_name)

74 write_sky_points

Arguments

sky_points An object of the class data.frame. The result of a calling to extract_sky_points.
path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

This function is part of a workflow that connects this package with the HSP software package (Lang
et al. 2013).

This function was designed to be called after extract_sky_points. The r argument provided to
extract_sky_points should be an image pre-processed by the HSP software. Those images are
stored as PGM files in the subfolder "manipulate" of the project folder (which will be in turn a
subfolder of the "projects" folder). Those PGM files can be read with read_caim.

The img_name argument of write_sky_points() should be the name of the file associated to the
aforementioned r argument.

The following code exemplifies how this package can be used in conjunction with the HSP software.
The code assumes that the user is working within an RStudio project located in the HSP project
folder.

r <- read_caim("manipulate/IMG_1014.pgm")
plot(r)
z <- zenith_image(ncol(r), lens())
a <- azimuth_image(z)
g <- sky_grid_segmentation(z, a, 10)
mblt <- ootb_mblt(r, z, a)
bin <- find_sky_pixels_nonnull(r, mblt$sky_s, g)
bin <- mask_hs(z, 0, 85) & bin

sun_coord <- extract_sun_coord(r, z, a, bin, g)
write_sun_coord(sun_coord$row_col, ".", "IMG_1014")

sky_points <- extract_sky_points(r, bin, g)
write_sky_points(sky_points, ".", "IMG_1014")

Value

None. A file will be written in the HSP project folder.

References

Lang M, Kodar A, Arumäe T (2013). “Restoration of above canopy reference hemispherical im-
age from below canopy measurements for plant area index estimation in forests/ Metsa võrastiku
läbipaistvuse mõõtmine digitaalsete poolsfäärikaamerate abil.” Forestry Studies, 59(1), 13–27.
doi:10.2478/fsmu20130008.

https://doi.org/10.2478/fsmu-2013-0008

write_sun_coord 75

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), row_col_from_zenith_azimuth(),
write_sun_coord(), zenith_azimuth_from_row_col()

write_sun_coord Write sun coordinates

Description

Create a special file to interface with the HSP software.

Usage

write_sun_coord(sun_coord, path_to_HSP_project, img_name)

Arguments

sun_coord Numeric vector of length two. Raster coordinates of the solar disk that can be
obtained by calling to extract_sun_coord. TIP: if the output of extrac_sun_coord()
is sun_coord, then you should provide here this: sun_coord$row_col. See also
row_col_from_zenith_azimuth in case you want to provide values based on
date and time of acquisition and the R package ’suncalc’.

path_to_HSP_project

Character vector of length one. Path to the HSP project folder. For instance,
"C:/Users/johndoe/Documents/HSP/Projects/my_prj/".

img_name Character vector of length one. For instance, "DSCN6342.pgm" or "DSCN6342".
See details.

Details

Refer to the Details section of function write_sky_points.

Value

None. A file will be written in the HSP project folder.

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), row_col_from_zenith_azimuth(),
write_sky_points(), zenith_azimuth_from_row_col()

76 zenith_image

zenith_azimuth_from_row_col

Zenith and azimuth angles from row and col numbers

Description

Zenith and azimuth angles from row and col numbers

Usage

zenith_azimuth_from_row_col(z, row_col, lens_coef)

Arguments

z SpatRaster built with zenith_image.

row_col Numeric vector of length two. Row and col numbers.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

Value

Numeric vector of length two.

See Also

Other HSP Functions: read_manual_input(), read_opt_sky_coef(), row_col_from_zenith_azimuth(),
write_sky_points(), write_sun_coord()

Examples

z <- zenith_image(1000, lens_coef = lens())
zenith_azimuth_from_row_col(z, c(501, 750), lens())

zenith_image Zenith image

Description

Built a single layer image with zenith angle values.

Usage

zenith_image(diameter, lens_coef)

zenith_image 77

Arguments

diameter Numeric vector of length one. Diameter in pixels expressed as an even integer,
so to simplify calculations by having the zenith point located between pixels.
Snapping the zenith point between pixels does not affect accuracy because half-
pixel is less than the uncertainty in localizing the circle within the picture.

lens_coef Numeric vector. Polynomial coefficients of the lens projection function.

Value

An object of class SpatRaster of zenith angles in degrees, showing a complete hemispherical view
with the zenith on the center.

See Also

Other Lens Functions: azimuth_image(), calc_diameter(), calc_zenith_raster_coord(),
calibrate_lens(), expand_noncircular(), fisheye_to_equidistant(), fisheye_to_pano(),
lens(), test_lens_coef()

Examples

z <- zenith_image(1490, lens("Nikon_FCE9"))
plot(z)

Index

∗ Binarization Functions
apply_thr, 3
find_sky_pixels, 25
find_sky_pixels_nonnull, 26
obia, 49
ootb_mblt, 50
ootb_obia, 52
regional_thresholding, 64
thr_image, 69
thr_isodata, 71

∗ HSP Functions
read_manual_input, 62
read_opt_sky_coef, 63
row_col_from_zenith_azimuth, 66
write_sky_points, 73
write_sun_coord, 75
zenith_azimuth_from_row_col, 76

∗ Lens Functions
azimuth_image, 4
calc_diameter, 5
calc_zenith_raster_coord, 6
calibrate_lens, 8
expand_noncircular, 17
fisheye_to_equidistant, 28
fisheye_to_pano, 29
lens, 41
test_lens_coef, 69
zenith_image, 76

∗ Pre-processing Functions
enhance_caim, 13
gbc, 38
local_fuzzy_thresholding, 42
membership_to_color, 47
normalize, 48

∗ Segmentation Functions
chessboard, 9
mask_hs, 45
mask_sunlit_canopy, 46
polar_qtree, 56

qtree, 58
rings_segmentation, 65
sectors_segmentation, 67
sky_grid_segmentation, 67

∗ Sky Reconstruction Functions
cie_sky_model_raster, 10
fit_cie_sky_model, 30
fit_coneshaped_model, 34
fit_trend_surface, 35
fix_reconstructed_sky, 37
interpolate_sky_points, 39
ootb_sky_reconstruction, 54

∗ Sky Reconstruction
extract_sun_coord, 24

∗ Tool Functions
colorfulness, 11
defuzzify, 12
extract_dn, 18
extract_feature, 19
extract_rl, 21
extract_sky_points, 22
masking, 44
read_bin, 60
read_caim, 61
write_bin, 72
write_caim, 73

apply_thr, 3, 26, 27, 50, 51, 53, 59, 65, 70, 71
auto_thresh, 64, 71
azimuth_image, 4, 6, 7, 9, 10, 17, 21, 24, 25,

28–30, 35, 42, 45, 49, 50, 52, 54, 57,
59, 67–69, 77

calc_diameter, 4, 5, 7, 9, 17, 28, 29, 42, 59,
69, 77

calc_zenith_raster_coord, 4, 6, 6, 9, 17,
28, 29, 42, 59, 69, 77

calc_zenith_raster_coordinates
(calc_zenith_raster_coord), 6

78

INDEX 79

calibrate_lens, 4, 6, 7, 8, 17, 28, 29, 42, 59,
69, 77

chessboard, 9, 23, 24, 27, 39, 45, 46, 57–59,
66–68

cie_sky_model_raster, 10, 32, 35–37, 40,
55, 63

color, 14, 19, 47, 52
colorfulness, 11, 13, 19, 20, 22, 23, 44, 59,

60, 62, 72, 73

defuzzify, 12, 12, 19, 20, 22, 23, 44, 53, 59,
60, 62, 72, 73

enhance_caim, 13, 19, 39, 43, 47, 48, 53, 59
expand_noncircular, 4, 6, 7, 9, 17, 28, 29,

42, 59, 69, 77
extract, 18
extract_dn, 12, 13, 18, 20–23, 39, 44, 59, 60,

62, 72, 73
extract_feature, 12, 13, 19, 19, 22, 23, 44,

59, 60, 62, 72, 73
extract_rl, 12, 13, 19, 20, 21, 23, 30, 34, 39,

44, 59, 60, 62, 72, 73
extract_sky_points, 12, 13, 18–22, 22, 44,

59, 60, 62, 72–74
extract_sun_coord, 24, 31, 59, 75

find_sky_pixels, 3, 25, 27, 50, 51, 53, 59,
65, 70, 71

find_sky_pixels_nonnull, 3, 26, 26, 50, 51,
53, 59, 65, 70, 71

fisheye_to_equidistant, 4, 6, 7, 9, 17, 28,
29, 42, 59, 69, 77

fisheye_to_pano, 4, 6, 7, 9, 17, 28, 29, 42,
59, 69, 77

fit_cie_sky_model, 10, 23, 27, 30, 35–37,
40, 55, 59

fit_coneshaped_model, 10, 27, 32, 34, 36,
37, 40, 51, 55, 59, 70

fit_trend_surface, 10, 27, 32, 35, 35, 37,
40, 51, 55, 59, 70

fix_predicted_sky
(fix_reconstructed_sky), 37

fix_reconstructed_sky, 10, 32, 35, 36, 37,
40, 51, 55, 59

gbc, 14, 15, 38, 39, 43, 47, 48, 59, 70

interpolate_sky_points, 10, 31, 32, 35–37,
39, 55, 59

knnidw, 39

lens, 4, 6, 7, 9, 17, 28, 29, 41, 59, 69, 77
lm, 34
local_fuzzy_thresholding, 14, 15, 39, 42,

46–48, 59

mask_hs, 10, 11, 14, 43, 44, 45, 46, 57–59,
66–68

mask_sunlit_canopy, 10, 45, 46, 53, 57–59,
66–68

masking, 12, 13, 19, 20, 22, 23, 44, 45, 59, 60,
62, 72, 73

membership_to_color, 14, 15, 39, 43, 46, 47,
48, 52, 59

mle2, 32

normalize, 15, 21, 23–25, 27, 30, 35, 39, 43,
44, 47, 48, 49, 50, 54, 59, 64, 70

obia, 3, 26, 27, 49, 51, 53, 59, 65, 70, 71
ootb_mblt, 3, 26, 27, 50, 50, 53, 59, 65, 70, 71
ootb_obia, 3, 26, 27, 50, 51, 52, 59, 65, 70, 71
ootb_sky_reconstruction, 10, 27, 32,

35–37, 40, 54, 59
optim, 31

plot, 11
polar_qtree, 10, 45, 46, 49, 53, 56, 58, 59,

66–68

qtree, 10, 45, 46, 49, 53, 57, 58, 59, 66–68
quantile, 64

rast, 60, 61
rcaiman, 59
read_bin, 12, 13, 19, 20, 22, 23, 44, 59, 60,

62, 72, 73
read_caim, 11–14, 17, 19–25, 27, 30, 35, 44,

46, 47, 49, 50, 52, 54, 59, 60, 61, 64,
72–74

read_manual_input, 21, 59, 62, 63, 66, 75, 76
read_opt_sky_coef, 59, 63, 63, 66, 75, 76
regional_thresholding, 3, 26, 27, 50, 51,

53, 59, 64, 70, 71
reproject_to_equidistant

(fisheye_to_equidistant), 28
rings_segmentation, 10, 45, 46, 57–59, 64,

65, 67, 68

80 INDEX

row_col_from_zenith_azimuth, 31, 59, 63,
66, 75, 76

sectors_segmentation, 10, 45, 46, 57–59,
66, 67, 68

sky_grid_segmentation, 10, 12, 23, 24, 27,
39, 45, 46, 57–59, 66, 67, 67

SpatRaster, 3, 4, 10–12, 14, 15, 17, 18, 20,
21, 23–30, 35–40, 43–55, 57, 58, 60,
62, 64–68, 70, 72, 73, 76, 77

surf.ls, 35, 36

test_lens_coef, 4, 6, 7, 9, 17, 28, 29, 42, 59,
69, 77

thr_image, 3, 26, 27, 35, 36, 50, 51, 53, 59,
64, 65, 69, 70, 71

thr_isodata, 3, 14, 26, 27, 43, 50, 51, 53, 64,
65, 70, 71

write_bin, 12, 13, 19, 20, 22, 23, 44, 59, 60,
62, 72, 73

write_caim, 12, 13, 19, 20, 22, 23, 44, 59, 60,
62, 72, 73

write_sky_points, 31, 55, 59, 63, 66, 73, 75,
76

write_sun_coord, 59, 63, 66, 75, 75, 76
writeRaster, 72, 73

zenith_azimuth_from_row_col, 59, 63, 66,
75, 76

zenith_image, 4, 6, 7, 9, 10, 17, 21, 24, 25,
28–30, 35, 37, 42, 45, 49, 50, 52, 54,
57, 59, 65, 66, 68, 69, 76, 76

	apply_thr
	azimuth_image
	calc_diameter
	calc_zenith_raster_coord
	calibrate_lens
	chessboard
	cie_sky_model_raster
	colorfulness
	defuzzify
	enhance_caim
	expand_noncircular
	extract_dn
	extract_feature
	extract_rl
	extract_sky_points
	extract_sun_coord
	find_sky_pixels
	find_sky_pixels_nonnull
	fisheye_to_equidistant
	fisheye_to_pano
	fit_cie_sky_model
	fit_coneshaped_model
	fit_trend_surface
	fix_reconstructed_sky
	gbc
	interpolate_sky_points
	lens
	local_fuzzy_thresholding
	masking
	mask_hs
	mask_sunlit_canopy
	membership_to_color
	normalize
	obia
	ootb_mblt
	ootb_obia
	ootb_sky_reconstruction
	polar_qtree
	qtree
	rcaiman
	read_bin
	read_caim
	read_manual_input
	read_opt_sky_coef
	regional_thresholding
	rings_segmentation
	row_col_from_zenith_azimuth
	sectors_segmentation
	sky_grid_segmentation
	test_lens_coef
	thr_image
	thr_isodata
	write_bin
	write_caim
	write_sky_points
	write_sun_coord
	zenith_azimuth_from_row_col
	zenith_image
	Index

