Package ‘vein’

October 8, 2021
Type Package
Title Vehicular Emissions Inventories
Version 0.9.4
Date 2021-10-06

Description Elaboration of vehicular emissions inventories,
consisting in four stages, pre-processing activity data, preparing
emissions factors, estimating the emissions and post-processing of emissions
in maps and databases. More details in Ibarra-Espinosa et al (2018) <doi:10.5194/gmd-11-2209-
2018>.
Before using VEIN you need to know the vehicular composition of your study area, in other words,
the combination of of type of vehicles, size and fuel of the fleet. Then, it is recommended to
start with the project to download a template to create a structure of directories and scripts.

License MIT + file LICENSE
URL https://github.com/atmoschem/vein

BugReports https://github.com/atmoschem/vein/issues
LazyData no
Depends R (>=3.5.0)

Imports sf (>=1.0.1), data.table, units, graphics, stats, dotCall64,
cptcity, fields, grDevices

Suggests knitr, rmarkdown, testthat, covr, Iwgeom
RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

Config/testthat/parallel true

VignetteBuilder knitr

Author Sergio Ibarra-Espinosa [aut, cre]
(<https://orcid.org/0000-0002-3162-1905>),
Joao Bazzo [ctb] (<https://orcid.org/0000-0003-4536-5006>)

Maintainer Sergio Ibarra-Espinosa <zergioibarra@gmail.com>
Repository CRAN
Date/Publication 2021-10-08 08:00:02 UTC


https://doi.org/10.5194/gmd-11-2209-2018
https://doi.org/10.5194/gmd-11-2209-2018
https://github.com/atmoschem/vein
https://github.com/atmoschem/vein/issues
https://orcid.org/0000-0002-3162-1905
https://orcid.org/0000-0003-4536-5006

2 R topics documented:

R topics documented:

add_1km . . . . . e s 4
add_miles . . . . .. s 4
add_polid . . . . .. 5
adt . . . e e e e 6
AZE . o o e e e e e e e e e e e 7
age_hdv . . .. e 9
age_ldv . . .o 11
AZE_MOLO .« . o vt e e e e e e e e e e e e e e e e e 12
AW . o e e e e e 14
Celsius . . . . . . e e 15
check nt . . . . . L e 16
cold_mileage . . . . . . . . . e 17
colplot . . . . . Lo e 17
decoder . . . . . . . .. e e 19
ef cetesb . . . L L 20
ef china . . . . . . . . e 23
ef_eea . . . . . L e e e e 27
ef_evap . . .. e 28
ef fun . . . . . e e e e 30
ef hdv_scaled . . . . . . . . . e 31
ef_hdv_speed . . . . . . . . e 32
ef 1M . . . 34
ef IVE . . e 35
ef Idv_cold . . . . . . . e 37
ef Idv_cold_list . . . . . . . . . . . e e e 39
ef Idv_scaled . . . . . . . . e 40
ef_ldv_speed . . . . . . . . L 41
ef local . . . . . L e, 45
ef NItro . . . . . e 47
ef_wear . . . . . e e e e 48
ef_whe. . . . . . e e e e 49
CIMES . & & v vt e i e e e e e e e e e e e 50
EmissionFactors . . . . . . . . . . .. 54
EmissionFactorsList . . . . . . . . . . ... 56
Emissions . . . . . . . . .. e 57
EmissionsArray . . . . . . . . o e e e e e e 59
emis_chem . . . . . . . .. e e e e e 60
emis_chem?2 . . . . . . . . e 61
emis_cold . . . . .. s 63
emis_cold_td . . . . .. e 66
emis_det . . . . .o 68
emis_diSt . . ..o e 70
BIMIS_EVAD « . v v v v e e e e e e e e e e e e e e e e e e e e 71
BMIS_EVAPZ . . . . v it e e e e e e e e e e e 73
emis_grid . . . ... e e 75

emis_hot_td . . . . . . . e 77



R topics documented: 3

Index

EMIS_MEIZE . .« « v v v v v e e e e e e e e e e e e e e e e e e e e e 82
EMIS_OTdEr . . . . . . o e 83
emis_paved . . ... L e e e e 85
EMIS_POSt © . v v e e e e e e e e e e e e e e 87
EMIS_SOUICE . .« v v v v o o e e e e e e e e e e 89
EMIS_LO_SITEELS . . . . . . o e e e e e e e e e e 90
EIMIS_WEAL . . . o v v v o o e e e e e e e e e e e 91
fe2015 . . . e e 92
fkm . . e 93
fuel_corr. . . . . . . e 94
GEE_PIOJECt . . . v o e e 95
GriddedEmissionsArray . . . . . ... 96
grid_emis . . . . ... e e e e e 98
1707 o J 100
INVENTOTY . . . . . o o e e e e e e 101
long_to_wide . . . . . . . .. e e e e 103
make_grid . . . . ... 104
moves_ef . .. L L e e 105
moves_tpd . . . . .. e e e 106
mMoVeS_IPAY . . . . . e e 107
moves_tpdy_meta . . . . . . ... e e e e e 109
moves_trpdy_sf . . . . L 110
MOVES_IPSY_IMELA . .« . o v vt vttt e it e e e e e e e e e e 111
moves_tpsy_sf . . . L 112
moves_speed . . . ... e e e e e e e 113
MY_AZE .+ v v e e e e e e e e e e e e e e e e e e e e e 114
NEL . . . e e e e e e e e e e e 116
netspeed . . . ... e e e e e 116
pe_cold . . .o 118
pe_profile . . . ... 118
pollutants . . . . . . . .. e e e e 119
profiles . . ... 120
TEMOVE_UNIES . . . . o v v v v e e e e e e e e e e 121
SPECIALE . . . ot e e e e e e e e e e e e e e 121
Speed . . .. 125
SPlit_emis . . . . . .. e e e 126
temp_fact . . . .. e e 127
to_latex . . .. L 128
Vehicles . . . . . . . e e 129
VEIN_NOES . . v v v v v o o e e e e e e e e e e e 130
VKM . . e e e 132
wide_to_long . . . . . L e 133

134



4 add_miles

add_lkm Construction function to add unit km

Description

add_1km just add unit "km’ to different R objects

Usage
add_lkm(x)

Arguments

non non

X Object with class "data.frame", "matrix", "numeric" or "integer"

Value

Objects of class "data.frame" or "units"

See Also

Other Add distance unitts: add_miles()

Examples

## Not run:

a <- add_lkm(rnorm(100)*10)

plot(a)

b <- add_lkm(matrix(rnorm(100)*1@, ncol = 10))
print(head(b))

## End(Not run)

add_miles Construction function to add unit miles

Description

add_miles just add unit 'miles’ to different R objects

Usage
add_miles(x)

Arguments

non non

X Object with class "data.frame", "matrix", "numeric" or "integer"



add_polid 5

Value

Objects of class "data.frame" or "units"

See Also

Other Add distance unitts: add_1km()

Examples

## Not run:

a <- add_miles(rnorm(100)*10)

plot(a)

b <- add_miles(matrix(rnorm(100)*10, ncol = 10))
print(head(b))

## End(Not run)

add_polid Add polygon id to lines road network

Description

Sometimes you need to add polygon id into your streets road network. add_polid add add_polid
id into your road network cropping your network by.

For instance, you have open street maps road network the you have the polygon of your regions.
This function adds the id of your polygon as a new column in the streets network.

Usage

add_polid(polyg, street, by)

Arguments

polyg sf object POLYGON or sp

street streets road network class sf or sp

by Character indicating the column with the id in polyg
See Also

emis_to_streets



6 adt

Examples

## Not run:

data(net)

nets <- sf::st_as_sf(net)

bb <- sf::st_as_sf(sf::st_as_sfc(sf::st_bbox(nets)))
bb$id <- "a"

a <- add_polid(polyg = bb, street = nets, by = "id")

## End(Not run)

adt Average daily traffic (ADT) from hourly traffic data.

Description

adt calculates ADT based on hourly traffic data.

Usage

adt(

pc,

lcv,

hgv,

bus,

mc,

p_pc,
p_lcv,
p_hgv,
p_bus,
p_mc,
feqg_pc = 1
feq_lcv =
feq_hgv
feq_bus = 2,
feq_mc = 0.5

I
NN =~

Arguments

pc numeric vector for passenger cars

lev numeric vector for light commercial vehicles
hgv numeric vector for heavy good vehicles or trucks
bus numeric vector for bus

mc numeric vector for motorcycles

p_pc data-frame profile for passenger cars, 24 hours only.



age

p_lcv data-frame profile for light commercial vehicles, 24 hours only.
p_hgv data-frame profile for heavy good vehicles or trucks, 24 hours only.
p_bus data-frame profile for bus, 24 hours only.
p_mc data-frame profile for motorcycles, 24 hours only.
feq_pc Numeric, factor equivalence
feq_lcv Numeric, factor equivalence
feq_hgv Numeric, factor equivalence
feq_bus Numeric, factor equivalence
feq_mc Numeric, factor equivalence
Value

numeric vector of total volume of traffic per link as ADT

Examples

## Not run:

data(net)

data(pc_profile)

p1 <- pc_profile[, 1]

adtl <- adt(pc = net$ldv*0.75,
lcv = net$ldv*0.1,
hgv = net$hdv,
bus = net$hdv*0.1,
mc = net$ldv*0.15,
p_pc = pl,
p_lcv = pi,
p_hgv = p1,
p_bus = p1,
p_mc = p1)

head(adt1)

## End(Not run)

age Applies a survival rate to numeric new vehicles

Description

age returns survived vehicles

Usage

age(x, type = "weibull”, a = 14.46, b = 4.79, agemax, verbose = FALSE)



8 age

Arguments

X Numeric; numerical vector of sales or registrations for each year

type Character; any of "gompertz", "double_logistic", "weibull" and "weibull2"

a Numeric; parameter of survival equation

b Numeric; parameter of survival equation

agemax Integer; age of oldest vehicles for that category

verbose Logical; message with average age and total numer of vehicles regions or streets.
Value

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/dapt any of these functions.

gompertz: 1 - exp(-exp(a + b*time)), defaults PC: b = -0.137, a = 1.798, LCV: b = -0.141, a
= 1.618 MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes
Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia. This curve is also used by
Guo and Wang (2012, 2015) in the form: V*exp(alpha*exp(beta*E)) where V is the saturation
car ownership level and E GDP per capita Huo, H., & Wang, M. (2012). Modeling future vehicle
sales and stock in China. Energy Policy, 43, 17-29. doi:10.1016/j.enpol.2011.09.063 Huo, Hong,
et al. "Vehicular air pollutant emissions in China: evaluation of past control policies and future
perspectives." Mitigation and Adaptation Strategies for Global Change 20.5 (2015): 719-733.
double_logistic: 1/(1 + exp(a*(time + b))) + 1/(1 + exp(a*(time - b))), defaults PC: b = 21, a =
0.19, LCV: b=153,a=0.17, HGV: b= 17, a= 0.1, BUS: b = 19.1, a = 0.16 MCT (2006). de
Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes Moveis, no Setor Energético.
Ministerio da Ciencia e Tecnologia.

weibull: exp(-(time/a)*b), defaults PC: b = 4.79, a = 14.46, Taxi: b = +inf, a = 5, Government
and business: b = 5.33, a = 13.11 Non-operating vehicles: b = 5.08, a = 11.53 Bus: b = +inf, a =
9, non-transit bus: b = +inf, a = 5.5 Heavy HGV: b = 5.58, a = 12.8, Medium HGV: b =5.58, a =
10.09, Light HGV: b = 5.58, a = 8.02 Hao, H., Wang, H., Ouyang, M., & Cheng, F. (2011). Vehicle
survival patterns in China. Science China Technological Sciences, 54(3), 625-629.

weibull2: exp(-((time + b)/a)"b ), defaults b = 11, a = 26 Zachariadis, T., Samaras, Z., Zierock,
K. H. (1995). Dynamic modeling of vehicle populations: an engineering approach for emissions
calculations. Technological Forecasting and Social Change, 50(2), 135-149. Cited by Huo and
Wang (2012)

See Also
Other age: age_hdv(), age_ldv(), age_moto()



age_hdv

Examples

## Not run:
vehLIA <- rep(1, 25)
PV_Minia <- age(x = vehLIA)
PV_Minib <- age(x = vehLIA, type = "weibull2", b = 11, a = 26)
PV_Minic <- age(x = vehLIA, type = "double_logistic”, b = 21, a = 0.19)
PV_Minid <- age(x = vehLIA, type = "gompertz”, b = -0.137, a = 1.798)
plot(PV_Minia, type = "b", pch = 16)
lines(PV_Minib, type = "b", pch = 16, col = "red")
lines(PV_Minic, type = "b", pch = 16, col "blue")
lines(PV_Minid, type = "b", pch = 16, col "green")
legend(x = 20, y = 0.85,
legend = c("weibull”, "weibull2", "double_logistic"”, "gompertz"),
col = c("black”, "red"”, "blue"”, "green"),
lty=c(1,1),
lwd=c(2.5, 2.5, 2.5, 2.5))
#lets put some numbers
vehLIA <- c(65400, 79100, 80700, 85300, 86700, 82000, 74500, 67700, 60600, 62500,
84700, 62600, 47900, 63900, 41800, 37492, 34243, 30995, 27747, 24499, 21250,
18002, 14754, 11506, 8257)
PV_Minia <- age(x = vehLIA)
PV_Minib <- age(x = vehLIA, type = "weibull2”, b = 11, a = 26)
PV_Minic <- age(x = vehLIA, type = "double_logistic”, b =21, a = 0.19)
PV_Minid <- age(x = vehLIA, type = "gompertz", b = -0.137, a = 1.798)
plot(PV_Minia, type = "b", pch = 16)
lines(PV_Minib, type = "b", pch = 16, col "red")
lines(PV_Minic, type = "b", pch = 16, col = "blue")
lines(PV_Minid, type = "b", pch = 16, col = "green")
legend(x = 20, y = 80000,
legend = c("weibull”, "weibull2", "double_logistic”, "gompertz"),
col = c("black”, "red", "blue”, "green"),
lty=c(1,1),
lwd=c(2.5, 2.5, 2.5, 2.5))

## End(Not run)

age_hdv Returns amount of vehicles at each age

Description

age_hdv returns amount of vehicles at each age

Usage

age_hdv(
X,
name =
a=2=a0.2,

n n

age’,



10

b =17,
agemin =
agemax =
k=1,
bystreet
net,

verbose =

namerows,
time

Arguments

X

name
a

b

agemin
agemax

k
bystreet

net
verbose
namerows

time

Value

age_hdv

FALSE,

Numeric; numerical vector of vehicles with length equal to lines features of road
network

Character; of vehicle assigned to columns of dataframe

Numeric; parameter of survival equation

Numeric; parameter of survival equation

Integer; age of newest vehicles for that category

Integer; age of oldest vehicles for that category

Numeric; multiplication factor. If its length is > 1, it must match the length of x

Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x

SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
Logical; message with average age and total numer of vehicles
Any vector to be change row.names. For instance, name of regions or streets.

Character to be the time units as denominator, eg "1/h"

dataframe of age distrubution of vehicles at each street

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using

these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

Other age: age_ldv(), age_moto(), age()



age_ldv

Examples

## Not run:
data(net)

11

LT_B5 <- age_hdv(x = net$hdv,name = "LT_B5")

plot(LT_B5)

LT_B5 <- age_hdv(x = net$hdv, name = "LT_B5"”, net = net)

plot(LT_B5)

## End(Not run)

age_ldv

Returns amount of vehicles at each age

Description

age_ldv returns amount of vehicles at each age

Usage

age_ldv(
X,
name = "age
a=1.698,
b =-0.2,
agemin = 1,

agemax = 50,

k=1,

bystreet = F,

net,

verbose = FALSE,

namerows,
time

Arguments

X

name
a

b

agemin
agemax

k
bystreet

Numeric; numerical vector of vehicles with length equal to lines features of road
network

Character; of vehicle assigned to columns of dataframe

Numeric; parameter of survival equation

Numeric; parameter of survival equation

Integer; age of newest vehicles for that category

Integer; age of oldest vehicles for that category

Numeric; multiplication factor. If its length is > 1, it must match the length of x

Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x



12 age_moto

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose Logical; message with average age and total numer of vehicles
namerows Any vector to be change row.names. For instance, name of regions or streets.
time Character to be the time units as denominator, eg "1/h"
Value

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

It consists in a Gompertz equation with default parameters from 1 national emissions inventory for
green housegases in Brazil, MCT 2006

See Also

Other age: age_hdv(), age_moto(), age()

Examples

## Not run:

data(net)

PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400")

plot (PC_E25_1400)

PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400", net = net)
plot(PC_E25_1400)

## End(Not run)

age_moto Returns amount of vehicles at each age

Description

age_moto returns amount of vehicles at each age



age_moto

Usage

age_moto(
X,
name =
a=2=a.2,
b =17,
agemin =
agemax =
k=1,

n

age

13

bystreet = FALSE,

net,

verbose =

namerows,
time

Arguments

X

name
a

b

agemin
agemax

k
bystreet

net
verbose
namerows

time

Value

FALSE,

Numeric; numerical vector of vehicles with length equal to lines features of road
network

Character; of vehicle assigned to columns of dataframe

Numeric; parameter of survival equation

Numeric; parameter of survival equation

Integer; age of newest vehicles for that category

Integer; age of oldest vehicles for that category

Numeric; multiplication factor. If its length is > 1, it must match the length of x

Logical; when TRUE it is expecting that *a’ and ’b’ are numeric vectors with
length equal to x

SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
Logical; message with average age and total numer of vehicles
Any vector to be change row.names. For instance, name of regions or streets.

Character to be the time units as denominator, eg "1/h"

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using

these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.



14

See Also

Other age: age_hdv (), age_ldv(), age()

Examples

## Not run:
data(net)

MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k

plot(MOTO_E25_500)
MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k =
plot(MOTO_E25_500)

## End(Not run)

0.4)

0.4, net

net)

aw

aw

Average Weight for hourly traffic data.

Description

aw average weight form traffic.

Usage

aw(
pc,
lev,
hgv,
bus,
mc,
p_pc,
p_lcv,
p_hgv,
p_bus,
p_mc,
w_pc =1,
w_lcv = 3.5,
w_hgv = 20,
w_bus = 20,
w_mc = 0.5,
net

Arguments

pc
lcv

hgv

numeric vector for passenger cars
numeric vector for light commercial vehicles

numeric vector for heavy good vehicles or trucks



celsius

bus
mc
p_pc
p_lcv
p_hgv
p_bus
p_mc
w_pc
w_lcv
w_hgv
w_bus
w_mc

net

Value

15

numeric vector for bus

numeric vector for motorcycles

data-frame profile for passenger cars, 24 hours only.
data-frame profile for light commercial vehicles, 24 hours only.
data-frame profile for heavy good vehicles or trucks, 24 hours only.
data-frame profile for bus, 24 hours only.

data-frame profile for motorcycles, 24 hours only.

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

data.frame with with average weight

Examples

## Not run:

data(net)

data(pc_profile)
pl <- pc_profile[, 1]

awl <- aw(pc

head(aw1)

= net$ldv*0.75,
lcv = net$ldvx0.1,
hgv = net$hdv,
bus = net$hdv*0.1,
mc = net$ldvx0.15,

p_pc = pl,
p_lcv = p1,
p_hgv = p1,
p_bus = p1,
p_mc = p1)

## End(Not run)

celsius

Construction function for Celsius temperature

Description

celsius just add unit celsius to different R objects



16 check nt

Usage

celsius(x)

Arguments

non non

X Object with class "data.frame", "matrix", "numeric" or "integer'

1

Value

Objects of class "data.frame" or "units"

Examples

## Not run:

a <- celsius(rnorm(100)*10)

plot(a)

b <- celsius(matrix(rnorm(100)*1@, ncol = 10))
print(head(b))

## End(Not run)

check_nt Check the max number of threads

Description

get_threads check the number of threads in this machine

Usage

check_nt()

Value

Integer with the max number of threads

Examples

{
check_nt()

}



cold_mileage 17

cold_mileage Fraction of mileage driven with a cold engine or catalizer below nor-
mal temperature

Description

This function depends length of trip and on ambient temperature. From the guidelines EMEP/EEA
air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-
emission-inventory-guidebook

Usage

cold_mileage(ltrip, ta)

Arguments
ltrip Numeric; Length of trip. It must be in ’units’ km.
ta Numeric or data.frame; average monthly temperature Celsius. Itif is a data.frame,
it is convenient that each column is each month.
Note

This function is set so that values vaires between 0 and 1.

Examples

## Not run:

1km <- units::set_units(1:10, km)

ta <- celsius(matrix(@:9, ncol = 12, nrow = 10))

a <- cold_mileage(lkm, rbind(ta, ta))

(@

filled.contour(as.matrix(a), col = cptcity::lucky(n = 16))

## End(Not run)

colplot Function to plot columns of data.frames

Description

colplot plots columns of data.frame



18

Usage

colplot(

df,
X,
cols
xlab
ylab
main

colplot

names (df),

nn
’
nn

NULL,

theme = "black”,

col = cptcity::cpt(pal = cptcity::find_cpt("pastel”)[4], n = length(names(df))),
type = Ilbll,
lwd = 2,
pch = 1:ncol(df),

familyfont =

spl = 5,

all_values

Arguments
df
X
cols
xlab
ylab
main
theme

col

type

1wd
pch

nn

’

FALSE

data.frame.

the coordinates of points in the plot. (optional)
Character, columns of data.frame.

a label for the x axis, defaults to a description of x.
a label for the x axis, defaults to a description of x.
Character, a main title for the plot, see also title.
Character; "black”, "dark", "clean", "ink"

The colors for lines and points. Multiple colors can be specified so that each
point can be given its own color. If there are fewer colors than points they are re-
cycled in the standard fashion. Default are cptcity colour palette "kst_18_pastels"

1-character string giving the type of plot desired. The following values are pos-
sible, for details, see plot: "p" for points, "I" for lines, "b" for both points and
lines, "c" for empty points joined by lines, "o" for overplotted points and lines,

"s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n
does not produce any points or lines.

a vector of line widths, see par.

plotting ‘character’, i.e., symbol to use. This can either be a single character or
an integer code for one of a set of graphics symbols. The full set of S symbols is
available with pch = 0:18, see the examples below. (NB: R uses circles instead
of the octagons used in S.). Value pch ="." (equivalently pch = 46) is handled
specially. It is a rectangle of side 0.01 inch (scaled by cex). In addition, if cex
= 1 (the default), each side is at least one pixel (1/72 inch on the pdf, postscript
and xfig devices). For other text symbols, cex = 1 corresponds to the default
fontsize of the device, often specified by an argument pointsize. For pch in 0:25

the default size is about 75 the character height (see par("cin")).



decoder 19

familyfont "Character" to specify font, default is"", options "serif", "sans", "mono" or more
according device
spl numer to control space for legend, default is 5.
all_values logical, if FALSe shows only positive > 0 values
Value
a nice plot
Note

This plot shows values > 0 by default. To plot all values, use all_values = TRUE

See Also

par

Examples

## Not run:

a <- ef_cetesb("C0", c("PC_G", "PC_FE", "PC_FG"), agemax = 20)

colplot(df = a, ylab = "CO [g/km]", theme = "dark"”, pch = NULL, type = "1")
#colplot(df = a, cols = "PC_FG", main = "EF", ylab = "CO [g/km]")
#colplot(df = a, ylab = "CO [g/km]"”, theme = "clean")

## End(Not run)

decoder Description data.frame for MOVES

Description

A data.frame descriptors to use MOVES functions

Usage

data(decoder)

Format
A data frame with 69 rows and 4 columns:

CategoryField dayID, sourceTyplD, roadTypelD, pollutantID and procesID
pollutantID Associated number

Description Associatd description

V4 pollutants

Source

US/EPA MOVES



20 ef _cetesb

ef_cetesb Emissions factors for Environment Company of Sao Paulo, Brazil
(CETESB)

Description

ef_cetesb returns a vector or data.frame of Brazilian emission factors.

Usage
ef_cetesb(
P,
veh,
year = 2017,
agemax = 40,
scale = "default”,
sppm,
full = FALSE,
efinput,
verbose = FALSE,
csv
)
Arguments
p Character;

Pollutants: "CO", "HC", "NMHC", "CH4", "NOx", "CO2", "RCHO" (aldehy-
des + formaldehyde), "ETOH", "PM", "N20", "KML", "FC", "NO2", "NO",
"NH3", "gD/KWH", "gCO2/KWH", "RCHO_Okm" (aldehydes + formaldehyde),
"PM25RES", "PM10RES", "CO_Okm", "HC_Okm", "NMHC_0Okm", "NOx_Okm",
"NO2_0km" ,"NO_Okm", "RCHO_Okm" and "ETOH_Okm", "FS" (fuel sales)
(g/km). If scale = "tunnel" is used, there is also "ALD" for aldehydes and
"HCHO" for formaldehydes Evaporative emissions at average temperature ranges:
"D_20_35","S_20_35","R_20_35","D_10_25","S_10_25", "R_10_25", "D_0_15",
"S_0_15"and "R_0_15" where D means diurnal (g/day), S hot/warm soak (g/trip)
and R hot/warm running losses (g/trip). THe deteriorated emission factors are
calculated inside this function.

veh Character; Vehicle categories: "PC_G", "PC_FG", "PC_FE", "PC_E", "LCV_G",
"LCV_FG","LCV_FE", "LCV_E", "LCV_D", "TRUCKS_SL", "TRUCKS_L",
"TRUCKS_M", "TRUCKS_SH", "TRUCKS_H", "BUS_URBAN", "BUS_MICRO",
"BUS_COACH", "BUS_ARTIC", "MC_G_150", "MC_G_150_500", "MC_G_500",
"MC_FG_150", "MC_FG_150_500", "MC_FG_500", "MC_FE_150", "MC_FE_150_500",
"MC_FE_500" "CICLOMOTOR", "GNV"

year Numeric; Filter the emission factor to start from a specific base year. If project
is "constant’ values above 2017 and below 1980 will be repeated

agemax Integer; age of oldest vehicles for that category



ef_cetesb

scale

sppm
full

efinput

verbose

CsVv

Value

21

Character; values "default","tunnel" o "tunnel2018". If "tunnel", emission fac-
tors are scaled to represent EF measurements in tunnels in Sao Paulo
Numeric, sulfur (sulphur) in ppm in fuel.

Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian
emissions standards and its euro equivalents.

data.frame with efinput structure of sysdata cetesb. Allow apply deterioration
for future emission factors

Logical; To show more information

String with the path to download the ef in a .csv file. For instance, ef.csv

A vector of Emission Factor or a data.frame

Note

The new convention for vehicles names are translated from CETESB report:

veh

PC_G

PC_E

PC_FG

PC_FE

LCV_G

LCV_E

LCV_FG
LCV_FE

LCV_D
TRUCKS_SL_D
TRUCKS_L_D
TRUCKS_M_D
TRUCKS_SH_D
TRUCKS_H_D
BUS_URBAN_D
BUS_MICRO_D
BUS_COACH_D
BUS_ARTIC_D
MC_150_G
MC_150_500_G
MC_500_G
MC_150_FG
MC_150_500_FG
MC_500_FG
MC_150_FE
MC_150_500_FE
MC_500_FE
PC_ELEC
LCV_ELEC

description

Passenger Car Gasohol (Gasoline + 27perc of anhydrous ethanol)

Passenger Car Ethanol (hydrous ethanol)

Passenger Car Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)

Passenger Car Flex Ethanol (hydrous ethanol)

Light Commercial Vehicle Gasohol (Gasoline + 27perc of anhydrous ethanol)

Light Commercial Vehicle Ethanol (hydrous ethanol)

Light Commercial Vehicle Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)
Light Commercial Vehicle Flex Ethanol (hydrous ethanol)

Light Commercial Vehicle Diesel (Sperc bio-diesel)

Trucks Semi Light Diesel (Sperc bio-diesel)

Trucks Light Diesel (Sperc bio-diesel)

Trucks Medium Diesel (Sperc bio-diesel)

Trucks Semi Heavy Diesel (Sperc bio-diesel)

Trucks Heavy Diesel (Sperc bio-diesel)

Urban Bus Diesel (5perc bio-diesel)

Micro Urban Bus Diesel (Sperc bio-diesel)

Coach (inter-state) Bus Diesel (Sperc bio-diesel)

Articulated Urban Bus Diesel (Sperc bio-diesel)

Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle engine less than 150cc Ethanol (hydrous ethanol)

Flex Motorcycle engine 150-500cc Ethanol (hydrous ethanol)

Flex Motorcycle greater than 500cc Ethanol (hydrous ethanol)

Passenger Car Electric

Light Commercial Vehicle Electric



ef _cetesb

The percentage varies of biofuels varies by law.
This emission factors are not exactly the same as the report of CETESB.

1) In this emission factors, there is also NO and NO2 based on split by published in the EMEP/EEA
air pollutant emission inventory guidebook.

2) Also, the emission factors were extended till 50 years of use, repeating the oldest value.

3) CNG emission factors were expanded to other pollutants by comparison of US.EPA-AP42 emis-
sion factor: Section 1.4 Natural Gas Combustion.

In the previous versions I used the letter ’d’ for deteriorated. I removed the letter d’ internally to
not break older code.

If by mistake, the user inputs one of veh names from the old convention, they are internally changed

to the new convention: "SLT", "LT", "MT", "SHT","HT", "UB", "SUB", "COACH", "ARTIC",
"M_G_150","M_G_150_500", "M_G_500", "M_FG_150", "M_FG_150_500", "M_FG_500", "M_FE_150",
"M_FE_150_500","M_FE_500", PC_ELEC, LCV_ELEC, TRUCKS_ELEC, BUS_ELEC, MC_150_ELEC,
MC_150_500_ELEC, MC_500_ELEC

If pollutant is "SO2", it needs sppm. It is designed when veh has length 1, if it has length 2 or more,
it will show a warning

Emission factor for vehicles older than the reported by CETESB were filled with las highest
EF

» Range EF from PC and LCV otto: 2018 - 1982. EF for 1981 and older as moving average.
* Range LCV diesel : 2018 - 2006. EF for 2005 and older as moving average.

* Range Trucks and Buse: 2018 - 1998. EF for 1997 and older as moving average.

* Range MC Gasoline: 2018 - 2003. EF for 2002 and older as moving average.

* Range MC Flex 150-500cc and >500cc: 2018 - 2012. EF for 2011 and older as moving
average.

Currently, 2020, there are not any system for recovery of fuel vapors in Brazil. Hence, the FS takes
into account the vapour that comes from the fuel tank inside the car and released into the atmosphere
when injecting new fuel. There are discussions about increasing implementing stage I and I and/or
ORVR these days. The ef FS is calculated by transforming g FC/km into (L/KM)*g/L with g/LL 1.14
fgor gasoline and 0.37 for ethanol (CETESB, 2016). The density considered is 0.75425 for gasoline
and 0.809 for ethanol (t/m”3)

CETESB emission factors did not cover evaporative emissions from motorcycles, which occur.
Therefore, in the absence of better data, it was assumed the same ratio from passenger cars.

Li, Lan, et al. "Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline
blends." Science of the Total Environment 502 (2015): 627-631.

If scale is used with tunnel, the references are:

* Pérez-Martinez, P. J., Miranda, R. M., Nogueira, T., Guardani, M. L., Fornaro, A., Ynoue, R.,
and Andrade, M. F. (2014). Emission factors of air pollutants from vehicles measured inside
road tunnels in Sao Paulo: case study comparison. International Journal of Environmental
Science and Technology, 11(8), 2155-2168.

* Nogueira, T., de Souza, K. F., Fornaro, A., de Fatima Andrade, M., and de Carvalho, L. R.
F. (2015). On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic
tunnels in the Metropolitan Area of Sao Paulo, Brazil. Atmospheric Environment, 108, 88-97.



ef _china 23

* Nogueira, T., et al (2021). In preparation (for tunnel 2018)

Emission factors for resuspension applies only with top-down approach as a experimental feature.
Units are g/(streets*veh)/day. These values were derived form a bottom-up resuspension emissions
from metropolitan area of Sao Paulo 2018, assuming 50000 streets

NH3 from EEA Tier 2

References

Emissoes Veiculares no Estado de Sao Paulo 2016. Technical Report. url: https://cetesb.sp.gov.br/veicular/relatorios-
e-publicacoes/.

Examples

## Not run:

a <- ef_cetesb(p = "C0", veh = "PC_G")

a <- ef_cetesb(p = "NOx", veh = "TRUCKS_M_D")

a <- ef_cetesb("R_10_25", "PC_G")

a <- ef_cetesb("C0", c("PC_G", "PC_FE"))

ef_cetesb(p = "C0", veh = "PC_G", year = 1970, agemax = 40)
ef_cetesb(p = "C0", veh "TRUCKS_L_D", year = 2018)

ef_cetesb(p = "C0", veh = "SLT", year = 2018) # olds names

a <- ef_cetesb(p = "NMHC", veh = c("PC_G", "PC_FG", "PC_FE", "PC_E"), year = 2018, agemax = 20)
colplot(a, main = "NMHC EF", ylab = "[g/km]", xlab = "Years of use")
ef_cetesb(p = "PM25RES", veh = "PC_ELEC", year = 1970, agemax = 40)
ef_cetesb(p = "PM25RES”, veh = "BUS_ELEC", year = 1970, agemax = 40)

## End(Not run)

ef_china Emissions factors from Chinese emissions guidelines

Description

ef_china returns emission factors as vector or data.frames. The emission factors comes from the
chinese emission guidelines (v3) from the Chinese Ministry of Ecology and Environment http://www.mee.gov.cn/gkml/hbb/b;

Usage

ef_china(

= "PV",

= "Small”,

= "G",
standard,

p,

k =1,

ta = celsius(15),
humidity = 0.5,
altitude = 1000,

—H + < |
|



24

ef _china

speed = Speed(30),
baseyear_det = 2016,
sulphur = 50,
load_factor = 0.5,
details = FALSE,
correction_only = FALSE

Arguments

Value

Note

Character; category vehicle: "PV" for Passenger Vehicles or ’Trucks"

Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

Character;fuel: "G", "D"

standard Character or data.frame; "PRE", "I", "II", "III", "IV", "V". When it is a data.frame,

it each row is a different region and ta, humidity, altitud, speed, sulphur and
load_factor lengths have the same as the number of rows.

Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Numeric; multiplication factor

Numeric; temperature of ambient in celcius degrees. When standard is a data.frame,
the length must be equal to the number of rows of standard.

humidity Numeric; relative humidity. When standard is a data.frame, the length must be

equal to the number of rows of standard.

altitude Numeric; altitude in meters. When standard is a data.frame, the length must be

equal to the number of rows of standard.

speed Numeric; altitude in km/h When standard is a data.frame, the length must be

equal to the number of rows of standard.

baseyear_det Integer; any of 2014, 2015, 2016, 2017, 2018
sulphur Numeric; sulphur in ppm. When standard is a data.frame, the length must be

equal to the number of rows of standard.

load_factor Numeric; When standard is a data.frame, the length must be equal to the number

of rows of standard.

details Logical; When TRUE, it shows a description of the vehicle in chinese and en-

glish. Only when length standard is 1.

correction_only

Logical; When TRUE, return only correction factors.

An emission factor

Combination of vehicles:



ef _china

See Also

\%
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV

Trucks

Trucks

Trucks

Trucks

Trucks

Trucks

Trucks

Trucks

Trucks

ef_ldv_speed emis_hot_td

Examples

## Not run:

# when standard is

# Checking

df_st <- rev(c(as.character(as.roman(5:1)), "PRE"))

ef_china(t

ef_china(t =

ef_china(t =

ef_china(t
ef_china(t

ef_china(t

ef_china(t =

ef_china(t

"Mini", f =
"Mini", f =
"Mini”, f
"Mini", f
"Mini", f
"Small”, f
"Small”, f
"Small”, f

'character’

t
Mini
Small
Medium
Large
Taxi
Bus
Motorcycles
Moped
Mini
Small
Mediumbus
Largebus
Bus
3-Wheel
Small
Mediumbus
Largebus
Taxi
Bus
Bus
Light
Medium
Heavy
Light
Medium
Heavy
Low Speed
Mini

"G", standard = df_st, p

"G", standard = df_st,
"G", standard
"G", standard = df_st,
"G", standard

df_st,

T T T T

df_st,

"G", standard = df_st, p
"G", standard = df_st, p
"G", standard = df_st, p

vAvivivaviviasNaoRoRoNaNaNaNa R

>
C
o

>
—
o

>
C
o

>
-
=

>
-
=

JoooogaaaQ

"Co™)
"HC")
"NOx")
"PM2.5")
"PM10")

nCOn)
"HC">
”NOX”)

25



ef _china

ef_china(t = "Small”, f = "G", standard = df_st, p
ef_china(t = "Small”, f = "G", standard = df_st, p

"PM2.5")
"PM10")

ef_china(t = "Mini",
standard = c("PRE"),
p = "Co",
k=1,
ta = celsius(15),
humidity = 0.5,
altitude = 1000,
speed = Speed(30),
baseyear_det = 2014,
sulphur = 50,
load_factor = 0.5,
details = FALSE)

ef_china(standard = c("PRE", "I"), p = "C0O", correction_only = TRUE)

# when standard is 'data.frame'
df_st <- matrix(c("V"”, "Iv", "III", "III", "II", "I", "PRE"), nrow = 2, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)
a <- ef_china(standard = df_st,

p = "PM10",

ta = rep(celsius(15), 2),

altitude = rep(1000, 2),

speed = rep(Speed(30), 2),

sulphur = rep(50, 2))
dim(a)
dim(df_st)
ef_china(standard = df_st, p = "PM2.5", ta = rep(celsius(20), 2),
altitude = rep(1501, 2), speed = rep(Speed(29), 2), sulphur = rep(50, 2))
a

# when standard, temperature and humidity are data.frames

# assuming 10 regions

df_st <- matrix(c("v", "Iv", "III", "III", "I1I", "I", "PRE"), nrow = 10, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)

df_t <- matrix(21:30, nrow = 10, ncol = 12, byrow = TRUE)

df_t <- as.data.frame(df_t)

for(i in 1:12) df_t[, i] <- celsius(df_t[, il)

# assuming 10 regions

df_h <- matrix(seq(@.4, 0.5, 0.05), nrow = 10, ncol = 12, byrow = TRUE)

df_h <- as.data.frame(df_h)

a <- ef_china(standard = df_st, p = "C0", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a

a <- ef_china(standard = df_st, p = "PM2.5", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a

a <- ef_china(standard = df_st, p = "PM10", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a



ef _eea

dim(a)

## End(Not run)

27

ef_eea

Emissions factors from European European Environment Agency

Description

ef_cetesb returns

Usage

a vector or data.frame of Brazilian emission factors.

ef_eea(category, fuel, segment, euro, tech, pol, mode, slope, load, speed)

Arguments

category

fuel

segment
euro
tech
pol
mode
slope
load

speed

Value

String: "Passenger Cars", "Light Commercial Vehicles", "Heavy Duty Trucks",
"Buses" or "L-Category".

String; "Petrol", "Petrol Hybrid", "Petrol PHEV ~ Petrol", "Petrol PHEV ~
Electricity", "Diesel", "Diesel PHEV ~ Diesel", "Diesel PHEV ~ Electricity",
"LPG Bifuel ~ LPG", "LPG Bifuel ~ Petrol", "CNG Bifuel ~ CNG", "CNG Bi-
fuel ~ Petrol", "Diesel Hybrid ~ Diesel", "Diesel Hybrid ~ Electricity", "CNG",
"Biodiesel"

String for type of vehicle.

String; euro standard.

String; technology.

String; "CO", "NOx", "VOC", "PM Exhaust", "EC", "CH4", "NH3", "N20O"
String; "Urban Peak", "Urban Off Peak", "Rural", "Highway", NA.
Numeric; 0.00, -0.06, -0.04, -0.02, 0.02, 0.04, 0.06, or NA

Numeric; 0.0,0.5, 1.0 or NA

Numeric; optional numeric in km/h.

Return a function depending of speed or numeric (g/km)

Examples

## Not run:

# ef_eea(category = "I DONT KNOW")
ef_eea(category = "Passenger Cars”,

fuel = "Petrol”,
segment = "Small”
euro = "Euro 1",
tech = NA,

’



28

pol = "C0",
mode = NA,
slope = 0,

load = 0)(10)

## End(Not run)

ef_evap

ef_evap

Evaporative emission factor

Description

ef_evap is a lookup table with tier 2 evaporative emission factors from EMEP/EEA emisison guide-

lines

Usage

ef_evap(
ef,
v,
cc,
dt,
ca,

pollutant = "NMHC",

k=1,
ltrip,
kmday,
show =

FALSE,

verbose = FALSE

Arguments

ef

ccC

dt

Name of evaporative emission factor as *eshotc*: mean hot-soak with carbu-
rator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean
hot-soak with fuel injection, *erhotc*: mean hot running losses with carbura-
tor, *erwarmc™* mean cold and warm running losses, *erhotfi* mean hot running
losses with fuel injection. Length of ef 1.

Type of vehicles, "PC", "Motorcycle", "Motorcycle_2S" and "Moped"

Size of engine in cc. PC "<=1400", "1400_2000" and ">2000" Motorcycle_2S:
"<=50". Motorcyces: ">50", "<=250", "250_750" and ">750". Only engines of
>750 has canister.

Character or Numeric: Average monthly temperature variation: "-5_10", "0_15",
"10_25" and "20_35". This argument can vector with several elements. dt can
also be data.frame, but it is recommended that the number of columns are each
month. So that dt varies in each row and each column.



ef_evap

ca

pollutant

k
ltrip

kmday

show

verbose

Value

29

Size of canister: "no" meaning no canister, "small", "medium" and "large".

Character indicating any of the covered pollutants: "NMHC", "ethane", "propane",

"i-butane", "n-butane", "i-pentane"”, "n-pentane”, "2-methylpentane"”, "3-methylpentane”,

non nons non

"n-hexane", "n-heptane", "propene", "trans-2-butene", "isobutene", "cis-2-butene",

"non "nons non non

"1,3-butadiene"”, "trans-2-pentene", "cis-2-pentene", "isoprene", "propyne", "acety-
lene", "benzene", "toluene", "ethylbenzene", "m-xylene", "o-xylene", "1,2,4-
trimethylbenzene" and "1,3,5-trimethylbenzene". Default is "NMHC"

multiplication factor

Numeric; Length of trip. Experimental feature to conter g/trip and g/proced
(assuming proced similar to trip) in g/km.

Numeric; average daily mileage. Experimental option to convert g/day in g/km.
it is an information more solid than to know the average number of trips per day.

when TRUE shows row of table with respective emission factor.

Logical; To show more information

emission factors in g/trip or g/proced. The object has class (g) but it order to know it is g/trip or
g/proceed the argument show must by T

Note

Diurnal loses occur with daily temperature variations. Running loses occur during vehicles use.
Hot soak emission occur following vehicles use.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

## Not run:
# Do not run

a <- ef_evap(ef = "eshotc”, v = "PC", cc = "<=1400", dt = "0_15", ca = "no"

’

pollutant = "cis-2-pentene”)

a <- ef_evap(ef = "ed”, v = "PC", cc = "<=1400", dt = "0_15", ca = "no"

show = TRUE)
a <- ef_evap(ef
dt = "0_15", ca
show = TRUE)
a <- ef_evap(ef

’

c("erhotc”, "erhotc"), v

n

"PC" | cc = "<=1400",

n

no"”,

c("erhotc”, "erhotc"), v = "PC", cc = "<=1400",

dt = "0_15", ca = "no",

show = FALSE)

a <- ef_evap(ef = "eshotc”, v = "PC", cc = "<=1400", dt = "0_15", ca = "no”

show = TRUE)

’

ef_evap(ef = "erhotc”, v = "PC", cc = "<=1400", dt = "0_15", ca = "no”",

show = TRUE)
temps <- 10:20



30 ef fun

a <- ef_evap(ef = "erhotc”, v = "PC", cc = "<=1400", dt = temps, ca = "no",
show = TRUE)

dt <- matrix(rep(1:24,5), ncol = 12) # 12 months

dt <- celsius(dt)

a <- ef_evap(ef ="erhotc”, v = "PC", cc = "<=1400",

dt = dt, ca = "no")

1km <- units::set_units(10, km)

a <- ef_evap(ef ="erhotc”, v = "PC", cc = "<=1400", ltrip = lkm,

dt = dt, ca = "no")

## End(Not run)

ef_fun Experimental: Returns a function of Emission Factor by age of use

Description

ef_fun returns amount of vehicles at each age

Usage

ef_fun(
ef,
type = "logistic”,
x = 1:1length(ef),
x@ = mean(ef),

k = 1/4,
L = max(ef)
)
Arguments
ef Numeric; numeric vector of emission factors.
type Character; "logistic" by default so far.
X Numeric; vector for ages of use.
X0 Numeric; the x-value of the sigmoid’s midpoint,
k Numeric; the steepness of the curve.
L Integer; the curve’s maximum value.
Value

dataframe of age distrubution of vehicles at each street.

References

https://en.wikipedia.org/wiki/Logistic_function



ef_hdv_scaled 31

Examples

## Not run:

data(fe2015)

CO <- vein::EmissionFactors(fe2015[fe2015%$Pollutant == "C0", "PC_G"])
ef_logit <- ef_fun(ef = CO, x0 = 27, k = 0.4, L = 33)

plot(ef_logit, type = "b", pch = 16)

lines(ef_logit, pch = 16, col = "blue")

## End(Not run)

ef_hdv_scaled Scaling constant with speed emission factors of Heavy Duty Vehicles

Description

ef_hdv_scaled creates a list of scaled functions of emission factors. A scaled emission factor
which at a speed of the dricing cycle (SDC) gives a desired value. This function needs a dataframe
with local emission factors with a columns with the name "Euro_HDV" indicating the Euro equiv-
alence standard, assuming that there are available local emission factors for several consecutive
years.

Usage
ef_hdv_scaled(df, dfcol, SDC = 34.12, v, t, g, eu, gr =0, 1 = 0.5, p)

Arguments
df deprecated
dfcol Column of the dataframe with the local emission factors eg df$dfcol
SDC Speed of the driving cycle
v Category vehicle: "Coach", "Trucks" or "Ubus"
t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"
eu Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"
gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
1 Load of the vehicle: 0.0, 0.5 or 1.0
p Pollutant: "CO", "FC", "NOx" or "HC"
Value

A list of scaled emission factors g/km



32 ef_hdv_speed

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

## Not run:

# Do not run

data(fe2015)

col <- fe2015[fe2015%Pollutant=="C0",]

lef <- ef_hdv_scaled(dfcol = col$LT, v = "Trucks”, t = "RT",

g = "<=7.5", eu = col$Euro_HDV, gr = 0, 1 = 0.5, p = "C0")

length(lef)

plot(x = 0:150, y = 1ef[[36]1](0:150), col = "red”, type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",

main = "Variation of emissions with speed of oldest vehicle”)

plot(x = 0:150, y = 1ef[[1]1]1(0:150), col = "blue"”, type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",

main = "Variation of emissions with speed of newest vehicle")

## End(Not run)

ef_hdv_speed Emissions factors for Heavy Duty Vehicles based on average speed

Description

This function returns speed dependent emission factors. The emission factors comes from the guide-
lines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage
ef_hdv_speed(

gr =0,

1 =20.5,

P,

k=1,

show.equation = FALSE,
speed,

fcorr = rep(1, 8)



ef_hdv_speed 33

Arguments
v Category vehicle: "Coach", "Trucks" or "Ubus"
t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",

">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"

eu Euro emission standard: "PRE", "I", "II", "III", "IV", "V". Also "II+CRDPF",
"III+CRDPF", "IV+CRDPF", "II+SCR", "III+SCR" and "V+SCR" for pollu-
tants Number of particles and Active Surface.

X Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in
fuel in ppm.

gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06

1 Load of the vehicle: 0.0, 0.5 or 1.0

p Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC",
"CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. See
notes.

k Multiplication factor

show.equation Option to see or not the equation parameters

speed Numeric; Speed to return Number of emission factor and not a function. It needs
units in km/h
fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1
Value

an emission factor function which depends of the average speed V g/km

Note

Pollutants (g/km): "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2", "Pb".
Black Carbon and Organic Matter (g/km): "BC", "OM"

PAH and POP (g/km): See speciate Dioxins and furans (g equivalent toxicity / km): See
speciate

Metals (g/km): See speciate
Active Surface (cm2/km) See speciate
Total Number of particles (N/km): See speciate

The available standards for Active Surface or number of particles are: Euro II and III Euro II and
IIT + CRDPF Euro II and III + SCR Euro IV + CRDPF Euro V + SCR

The categories Pre Euro and Euro I were assigned with the factors of Euro II and Euro III The
categories euro IV and euro V were assigned with euro IIT + SCR



34 ef im

See Also

fuel_corr emis ef_ldv_cold speciate

Examples

## Not run:

# Quick view

pol <- c("CO", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "C02", "S02")
f <- sapply(1:length(pol), function(i){

print(pol[il)

ef_hdv_speed(v = "Trucks"”,t = "RT", g = "<=7.5", e = "II", gr = 0O,

1 =0.5, p=pollil, x = 10)(30)

»

f

V <- 0:130

ef1 <- ef_hdv_speed(v = "Trucks”",t = "RT", g = "<=7.5", e = "II", gr = 0,

1 =0.5, p="HC")

plot(1:130, ef1(1:130), pch = 16, type = "b")

euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),
rep("I", 5), rep("PRE", 15))

lef <- lapply(1:30, function(i) {

ef_hdv_speed(v = "Trucks”, t = "RT", g = ">32", gr = 0,

eu = euro[i], 1 = 0.5, p = "NOx",

show.equation = FALSE)(25) })

efs <- EmissionFactors(unlist(lef)) #returns 'units'

plot(efs, xlab = "age")

lines(efs, type = "1")

a <- ef_hdv_speed(v = "Trucks”, t = "RT", g = ">32", gr = 0,

eu = euro, 1 = 0.5, p = "NOx", speed = Speed(0:125))

a$speed <- NULL

filled.contour(as.matrix(a), col = cptcity::lucky(n = 24),

xlab = "Speed”, ylab = "Age")

persp(x = as.matrix(a), theta = 35, xlab = "Speed”, ylab

zlab = "NOx [g/km]", col = cptcity::lucky(), phi = 25)

aa <- ef_hdv_speed(v = "Trucks"”, t = "RT", g = ">32", gr = 0,

eu = rbind(euro, euro), 1 = 0.5, p = "NOx", speed = Speed(0:125))

"Age” ,

## End(Not run)

ef_im Emission factors deoending on accumulated mileage

Description

ef_im calculate the theoretical emission factors of vehicles. The approache is different from includ-
ing deterioration factors (emis_det) but similar, because they represent how much emits a vehicle
with a normal deterioration, but that it will pass the Inspection and Manteinance program.



ef_ive 35

Usage

ef_im(ef, tc, amileage, max_amileage, max_ef, verbose = TRUE)

Arguments
ef Numeric; emission factors of vehicles with 0 mileage (new vehicles).
tc Numeric; rate of growth of emissions by year of use.
amileage Numeric; Accumulated mileage by age of use.

max_amileage Numeric; Max accumulated mileage. This means that after this value, mileage
is constant.

max_ef Numeric; Max ef. This means that after this value, ef is constant.
verbose Logical; if you want detailed description.
Value

An emission factor of a deteriorated vehicle under normal conditions which would be approved in
a inspection and mantainence program.

Examples

## Not run:

# Do not run

# Passenger Cars PC

data(fkm)

# cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:10))

ef_im(ef = seq(0.1, 2, 0.2), seq(@.1, 1, 0.1), mil)

## End(Not run)

ef_ive Base emissions factors from International Vehicle Emissions (IVE)
model

Description

ef_ive returns the base emission factors from the the IVE model. This function depend on vec-
torized mileage, which means your can enter with the mileage by age of use and the name of the
pollutant.



36

Usage

ef_ive(

ef _ive

description = "Auto/Sml Truck”,
fuel = "Petrol”,
weight = "Light",

air_fuel_control = "Carburetor”,
exhaust = "None",
evaporative = "PCV",
mileage,
pol,
details = FALSE
)
Arguments
description Character; "Auto/Sml Truck" "Truck/Bus" or"Sml Engine".
fuel Character; "Petrol", "NG Retrofit", "Natural Gas", "Prop Retro.", "Propane",
"EthOH Retrofit", "OEM Ethanol", "Diesel", "Ethanol" or "CNG/LPG".
weight Character; "Light", "Medium", "Heavy", "Lt", "Med" or "Hvy"

air_fuel_control

Character; One of the following characters: "Carburetor", "Single-Pt FI", "Multi-
PtFI", "Carb/Mixer", "FI", "Pre-Chamber Inject.", "Direct Injection", "2-Cycle",
"2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI" "4-Cycle"

exhaust Character: "None", "2-Way", "2-Way/EGR", "3-Way", "3-Way/EGR", "None/EGR",
"LEV", "ULEV", "SULEV", "Eurol", "EurolI", "EurolIl", "EurolV", "Hybrid",
"Improved", "EGR+Improv", "Particulate", "Particulate/NOx", "EuroV", "High
Tech" or "Catalyst"
evaporative Character: "PCV", "PCV/Tank" or"None".
mileage Numeric; mileage of vehicle by age of use km.
pol Character; One of the following characters: "Carburetor", "Single-Pt FI", "Multi-
PtFI", "Carb/Mixer", "FI", "Pre-Chamber Inject.", "Direct Injection"”, "2-Cycle",
"2-Cycle, FI", "4-Cycle, Carb", "4-Cycle, FI" "4-Cycle" #
"VOC_gkm" "CO_gkm" "NOx_gkm" "PM_gkm"
"Pb_gkm" "SO2_gkm" "NH3_gkm" "1,3-butadiene_gkm"
"formaldehyde_gkm" "acetaldehyde_gkm" "benzene_gkm" "EVAP_gkm"
"CO2_gkm" "N20_gkm" "CH4_gkm" "VOC_gstart"
"CO_gstart" "NOx_gstart" "PM_gstart" "Pb_gstart"
"SO2_gstart" "NH3_gstart" "1,3-butadiene_gstart" "formaldehyde_gstart"
"acetaldehyde_gstart" "benzene_gstart" "EVAP_gstart" "CO2_gstart"
"N20_gstart" "CH4_gstart"
details Logical; option to see or not more information about vehicle.



ef _Idv_cold 37

Value

An emission factor by annual mileage.

References

Nicole Davis, James Lents, Mauricio Osses, Nick Nikkila, Matthew Barth. 2005. Development
and Application of an International Vehicle Emissions Model. Transportation Research Board, 81st
Annual Meeting, January 2005, Washington, D.C.

Examples

## Not run:

# Do not run

# Passenger Cars PC

data(fkm)

# cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:50))
ef_ive("Truck/Bus", mileage = mil, pol = "CO_gkm")
ef_ive(mileage = mil, pol = "CO_gkm", details = TRUE)

## End(Not run)

ef_ldv_cold Cold-Start Emissions factors for Light Duty Vehicles

Description

ef_ldv_cold returns speed functions or data.frames which depends on ambient temperature aver-
age speed. The emission factors comes from the guidelines EMEP/EEA air pollutant emission in-
ventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-
guidebook

Usage

ef_ldv_cold(
v = "LDV",
ta,
cc,
f,
eu,
P,
k=1,
show.equation = FALSE,
speed,
fcorr = rep(1, 8)



38 ef Idv_cold

Arguments

v Character; Category vehicle: "LDV"

ta Numeric vector or data.frame; Ambient temperature. Monthly mean can be
used. When ta is a data.frame, one option is that the number of rows should be
the number of rows of your Vehicles data.frame. This is convenient for top-down
approach when each simple feature can be a polygon, with a monthly average
temperature for each simple feature. In this case, the number of columns can be
the 12 months.

cc Character; Size of engine in cc: "<=1400", "1400_2000" or ">2000"

f Character; Type of fuel: "G", "D" or "LPG"

eu Character or data.frame of Characters; Euro standard: "PRE", "I", "II", "III",
"IV", "V", "VI" or "VIc". When ’eu’ is a data.frame and ’ta’ is also a data.frame
both has to have the same number of rows. For instance, When you want that
each simple feature or region has a different emission standard.

p Character; Pollutant: "CO", "FC", "NOx", "HC" or "PM"

k Numeric; Multiplication factor

show.equation Option to see or not the equation parameters

speed Numeric; Speed to return Number of emission factor and not a function.
fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc¢". De-
fault is 1
Value

an emission factor function which depends of the average speed V and ambient temperature. g/km

See Also

fuel_corr

Examples

## Not run:

ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",

show.equation = TRUE)

ef1(10)

speed <- Speed(10)

ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO", speed = speed)

# lets create a matrix of ef cold at different speeds and temperatures

te <- -50:50

1f <- sapply(1:length(te), function(i){

ef_ldv_cold(ta = te[i], cc = "<=1400", f ="G", eu = "I", p = "C0", speed = Speed(0:120))
»

filled.contour(1lf, col= cptcity::lucky())

euros <- c("v", "y", 6 "iv", "I1r", "Iir", "1", "PRE", "PRE")

ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "C0", speed = Speed(0))

1f <- ef_ldv_cold(ta =10, cc = "<=1400", f ="G", eu = euros, p = "C0", speed = Speed(0:120))



ef _Idv_cold_list 39

dt <- matrix(rep(2:25,5), ncol = 12) # 12 months

ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = "I", p = "C0", speed = Speed(0))
ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = euros, p = "C0", speed = Speed(34))
euros2 <- c("Vv", "v", 6 "y "IV’ "Iy, "IV", "III", "III")

dfe <- rbind(euros, euros2)

ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "C0", speed = Speed(0))

ef_ldv_cold(ta = dt[1:2,], cc = "<=1400", f ="G", eu = dfe, p = "C0", speed = Speed(0))
# Fuel corrections

fcorr <- ¢(0.5,1,1,1,0.9,0.9,0.9,0.9)

ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",

show.equation = TRUE, fcorr = fcorr)

ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "C0", speed = Speed(0),

fcorr = fcorr)

## End(Not run)

ef_ldv_cold_list List of cold start emission factors of Light Duty Vehicles

Description
This function creates a list of functions of cold start emission factors considering different euro
emission standard to the elements of the list.

Usage

ef_ldv_cold_list(df, v = "LDV", ta, cc, f, eu, p)

Arguments
df Dataframe with local emission factor
v Category vehicle: "LDV"
ta ambient temperature. Montly average van be used
cc Size of engine in cc: <=1400", "1400_2000" and ">2000"
f Type of fuel: "G" or "D"
eu character vector of euro standards: "PRE", "I", "II", "III", "IV", "V", "VI" or
"VIc".
p Pollutant: "CO", "FC", "NOx", "HC" or "PM"
Value

A list of cold start emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle



40 ef _Idv_scaled

Examples

## Not run:

# Do not run

df <- data.frame(agel = c(1,1), age2 = c(2,2))

eu = c("I", "PRE")

1 <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",

eu = "I", p = "C0")

1_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
eu = eu, p = "C0")

length(1_cold)

## End(Not run)

ef_ldv_scaled Scaling constant with speed emission factors of Light Duty Vehicles

Description
This function creates a list of scaled functions of emission factors. A scaled emission factor which
at a speed of the driving cycle (SDC) gives a desired value.

Usage

ef_ldv_scaled(df, dfcol, SDC = 34.12, v, t = "4S", cc, f, eu, p)

Arguments
df deprecated
dfcol Column of the dataframe with the local emission factors eg df$dfcol
SDC Speed of the driving cycle
v Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t Sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504"

, "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S".
LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000", "<=800",
"<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750".
Moped: "<=50". LCV : "<3.5" for gross weight.

f Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)
eu Euro standard: "PRE", "T", "IT", "III", "III+DPF", "IV", "V", "VI", "VIc"
p Pollutant: "CO", "FC", "NOx", "HC" or "PM". If your pollutant dfcol is based

on fuel, use "FC", if it is based on "HC", use "HC".



ef_ldv_speed 41

Details

This function calls "ef_ldv_speed" and calculate the specific k value, dividing the local emission
factor by the respective speed emissions factor at the speed representative of the local emission
factor, e.g. If the local emission factors were tested with the FTP-75 test procedure, SDC = 34.12
km/h.

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle.
Thanks to Glauber Camponogara for the help.

See Also
ef _1dv_seed

Examples

## Not run:

data(fe2015)

col <- fe2015[fe2015%Pollutant=="C0", ]

lef <- ef_ldv_scaled(dfcol = col$PC_G, v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = col$Euro_LDV, p = "CO")

length(lef)

1ef[[1]1(40) # First element of the lit of speed functions at 40 km/h
lef[[36]11(50) # 36th element of the lit of speed functions at 5@ km/h

plot(x = 0:150, y = 1lef[[36]]1(0:150), col = "red”, type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",

main = "Variation of emissions with speed of oldest vehicle”)

plot(x = 0:150, y = 1lef[[1]](0:150), col = "blue”, type = "b", ylab = "[g/km]",
pch = 16, xlab = "[km/h]",

main = "Variation of emissions with speed of newest vehicle”)

## End(Not run)

ef_ldv_speed Emissions factors for Light Duty Vehicles and Motorcycles

Description

ef_ldv_speed returns speed dependent emission factors, data.frames or list of emission factors.
The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guide-
book http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook



42 ef_ldv_speed

Usage

ef_ldv_speed(
V!
t = "45",
cc,
f,
eu,
P,
X,
k =1,
speed,
show.equation = FALSE,
fcorr = rep(1, 8)

)
Arguments
v Character; category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t Character; sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503",

"ECE_1504", "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S"
or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Character; size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000",
"<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750",
">=750". Moped: "<=50". LCV : "<3.5" for gross weight.

f Character; type of fuel: "G", "D", "LPG" or "FH" (Gasoline Full Hybrid). Full
hybrid vehicles cannot be charged from the grid and recharge; only its own
engine may recharge tis batteries.

eu Character or data.frame of characters; euro standard: "PRE", "I", "II", "III",
"III+DPF", "IV", "V", "VI" or "VIc". When the pollutan is active surface or
number of particles, eu can also be "III+DISI"

o Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC",
"CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also
polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs),
and Number of particles and Active Surface.

X Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in
fuel in ppm.

k Numeric; multiplication factor

speed Numeric; Speed to return Number of emission factor and not a function.

show.equation Logical; option to see or not the equation parameters.

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc¢". De-
fault is 1



ef_ldv_speed 43

Details

The argument of this functions have several options which results in different combinations that
returns emission factors. If a combination of any option is wrong it will return an empty value.
Therefore, it is important ti know the combinations.

Value

An emission factor function which depends of the average speed V g/km

Note

t = "ALL" and cc == "ALL" works for several pollutants because emission fators are the same.
Some exceptions are with NOx and FC because size of engine.

Hybrid cars: the only cover "PC" and according to EMEP/EEA air pollutant emission inventory
guidebook 2016 (Ntziachristos and Samaras, 2016) only for euro IV. When new literature is avail-
able, I will update these factors.

POllutantS (g/km): ||COII’ "NOX”, llHC", IIPMII’ IICH4II’ IINMHCH, "C02||, IISOZII’ "Pb”, llFCll.
Black Carbon and Organic Matter (g/km): "BC", "OM"

PAH and POP (g/km): speciate Dioxins and furans(g equivalent toxicity / km): speciate
Metals (g/km): speciate

NMHC (g/km): speciate
Active Surface (cm2/km): speciate"AS_urban", "AS_rural", "AS_highway"

Total Number of particles (N/km): speciate "N_urban", "N_rural", "N_highway", "N_50nm_urban",
"N_50_100nm_rural", "N_100_1000nm_highway".

The available standards for Active Surface or number of particles are Euro I, I, III, III+DPF dor
diesle and III+DISI for gasoline. Pre euro vehicles has the value of Euro I and euro IV, V, VI and
VlIc the value of euro III.

See Also

fuel_corr emis ef_ldv_cold

Examples

## Not run:
# Passenger Cars PC
# Emission factor function

V <- 0:150
ef1 <- ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "CO")

efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]", type = "b", pch = 16, col = "blue")

# Quick view

pol <_ C(HCOII s ”NOX” ) IIHCII s IINMHCII s IICH4II s IIFCII s ”PMH s HCOZ n s “302” )
"1-butyne”, "propyne")

f <- sapply(1:length(pol), function(i){



44

ef_ldv_speed

ef_ldv_speed("PC", "4S", "<=1400", "G", "PRE", pol[il], x = 10)(30)
»

f

# PM Characteristics

pol <- c("AS_urban”, "AS_rural”, "AS_highway",

"N_urban”, "N_rural”, "N_highway",

"N_50nm_urban”, "N_50_100nm_rural”, "N_100_1000nm_highway")

f <- sapply(1:length(pol), function(i){

ef_ldv_speed("PC", "4S", "<=1400", "D", "PRE", pol[i], x = 10)(30)
1)

.f_‘

# PAH POP

ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "indeno(1,2,3-cd)pyrene”) (10)

ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f
p = "napthalene”)(10)

nGu’ eu = "PRE",

# Dioxins and Furans
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f
p = "PCB")(10)

"G”, eu = IIPREII,

# NMHC
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f
p = "hexane”) (10)

"G", eu = "PRE",

# List of Copert emission factors for 40 years fleet of Passenger Cars.

# Assuming a euro distribution of euro V, IV, III, II, and I of

# 5 years each and the rest 15 as PRE euro:

euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),
rep("I", 5), rep("PRE", 15))

speed <- 25

lef <- lapply(1:40, function(i) {

ef_ldv_speed(v = "PC", t = "4S", cc
eu = euro[i], p = "C0")

ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euro[i], p = "C0", show.equation = FALSE)(25) })

# to check the emission factor with a plot

efs <- EmissionFactors(unlist(lef)) #returns 'units'

plot(efs, xlab = "age")

lines(efs, type = "1")

euros <- c("vIi", "v", "IV", "III", "II")

ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "C0")

a <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "C0", speed = Speed(0:120))

n<=-]400n, .F - "G”,

head(a)

filled.contour(as.matrix(a)[1:10, 1:length(euros)], col = cptcity::cpt(n = 18))
filled.contour(as.matrix(a)[110:120, 1:length(euros)], col = cptcity::cpt(n = 16))
filled.contour(as.matrix(a)[, 1:length(euros)], col = cptcity::cpt(n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],

col = cptcity::cpt("mpl_viridis”, n = 21))

filled.contour(as.matrix(a)[, 1:length(euros)],

col = cptcity::cpt("mpl_magma”, n = 21))



ef _local

persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 0)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 45)
persp(as.matrix(a)[, 1:length(euros)], phi = @, theta = 90)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 90+45)
persp(as.matrix(a)[, 1:length(euros)], phi = @, theta = 180)
new_euro <- c("VI", "VI", "v" B "V" "V")
euro <- c("V", "v" 6 "Iy", "III", "II")
old_euro <- c("III", "II", "I", "PRE", "PRE")
meuros <- rbind(new_euro, euro, old_euro)
aa <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = meuros, p = "C0", speed = Speed(10:11))
# Light Commercial Vehicles
V <- 0:150
ef1 <- ef_ldv_speed(v = "LCV",t = "4S", cc = "<3.5", f = "G", eu = "PRE",
p = "C0")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")
lef <- lapply(1:5, function(i) {
ef_ldv_speed(v = "LCV", t = "4S", cc = "<3.5", f = "G",
eu = euro[i], p = "C0", show.equation = FALSE)(25) })
# to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "1")

# Motorcycles

V <- 0:150

ef1 <- ef_ldv_speed(v = "Motorcycle”,t = "4S", cc = "<=250", f = "G",
eu = "PRE", p = "CO0",show.equation = TRUE)

efs <- EmissionFactors(ef1(1:150))

plot(Speed(1:150), efs, xlab = "speed[km/h]")

# euro for motorcycles

eurom <- c(rep("III", 5), rep("II", 5), rep("I", 5), rep("PRE", 25))
lef <- lapply(1:30, function(i) {

ef_ldv_speed(v = "Motorcycle”, t = "4S", cc = "<=250", f = "G",

eu = eurom[i], p = "CO",

show.equation = FALSE)(25) })

efs <- EmissionFactors(unlist(lef)) #returns 'units'

plot(efs, xlab = "age")

lines(efs, type = "1")

a <- ef_ldv_speed(v = "Motorcycle”, t = "4S", cc = "<=250", f = "G",
eu = eurom, p = "CO", speed = Speed(0:125))

a$speed <- NULL

filled.contour(as.matrix(a), col = cptcity::lucky(),

xlab = "Speed”, ylab = "Age")

persp(x = as.matrix(a), theta = 35, xlab = "Speed”, ylab = "Euros”,
zlab = "CO [g/km]", col = cptcity::lucky(), phi = 25)

## End(Not run)




46 ef _local

ef_local Local Emissions factors

Description

ef_local process an data.frame delivered by the user, but adding similar funcionality and argu-
ments as ef _cetesb, which are classification, filtering and projections

Usage
ef_local(
P,
veh,
year = 2017,
agemax = 40,
ef,
full = FALSE,
project = "constant”,
verbose = TRUE
)
Arguments
p Character; pollutant delivered by the user. the name of the column of the data.frame
must be Pollutant.
veh Character; Vehicle categories available in the data.frame provided by the user
year Numeric; Filter the emission factor to start from a specific base year. If project
is constant’ values above 2017 and below 1980 will be repeated
agemax Integer; age of oldest vehicles for that category
ef data.frame, for local the emission factors. The names of the ef must be ‘Age’
“Year® ‘Pollutant® and all the vehicle categories...
full Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian
emissions standards and its euro equivalents.
project Character showing the method for projecting emission factors in future. Cur-
rently the only value is "constant”
verbose Logical; To show more information
Details

returns a vector or data.frame of Brazilian emission factors.

Value

A vector of Emission Factor or a data.frame

Note

The names of the ef must be ‘Age* ‘Year* ‘Pollutant® and all the vehicle categories...



ef_nitro 47

See Also

ef_cetesb

Examples

## Not run:
#do not run

## End(Not run)

ef_nitro Emissions factors of N20 and NH3

Description

ef_nitro returns emission factors as a functions of acondumulated mileage. The emission factors
comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/eme;
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_nitro(
V)
t = "Hot",
cond = "Urban",
cc,
f,
eu,
p = "NH3",
S = 1o,
cumileage,
k=1,

show.equation = FALSE,
fcorr = rep(1, 8)

)
Arguments
v Category vehicle: "PC", "LCV", "Motorcycles_2S", "Motorcycles", "Trucks",
"Trucks-A", "Coach" and "BUS"
t Type: "Cold" or "Hot"
cond "Urban", "Rural", "Highway"
cc PC: "<=1400", "1400_2000", ">2000". LCV: "<3.5". Motorcycles: ">=50",

Motorcycles_2S, "<50", ">=50". Trucks: ">3.5", "7.5_12", "12_28", "28_34".
Trucks_A: ">34". BUS: "<=15", ">15 & <= 18". Coach: "<=18", ">18"

f Type of fuel: "G", "D" or "LPG"



48

eu

p
S

cumileage

k
show.equation

fcorr

Value

ef _wear

Euro standard: IIPREII’ |VIH, llII"’ HIIIVI’ HIVII’ IIVII’ HVIII’ IIVICII
Pollutant: "N20", "NH3"
Sulphur (ppm). Number.

Numeric; Acondumulated mileage to return number of emission factor and not
a function.

Multiplication factor
Option to see or not the equation parameters

Numeric; Correction by by euro technology.

an emission factor function which depends on the acondumulated mileage, or an EmissionFactor

Note

if length of eu is bigger than 1, cumileage can have values of length 1 or length equal to length of

cu

Examples

## Not run:

efel@ <- ef_nitro(v = "PC", t

"Hot", cond = "Urban”, f = "G", cc = "<=1400",

eu = "III", p = "NH3", S = 10,

show.equation =

FALSE)

efe50 <- ef_nitro(v = "PC", t = "Hot"”, cond = "Urban”, f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 50,

show.equation =

efel0(10)
efe50(10)

TRUE)

efel1@ <- ef_nitro(v = "PC", t = "Hot", cond = "Urban”, f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10, cumileage = units::set_units(25000, "km"))

## End(Not run)

ef_wear

Emissions factors from tyre, break and road surface wear

Description

ef_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

ef_wear(wear, type, pol = "TSP", speed, load = 0.5, axle = 2)



ef_whe 49

Arguments
wear Character; type of wear: "tyre", "break" and "road"
type Character; type of vehicle: "2W", "PC", "LCV", "HDV"
pol Character; pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PMO.1"
speed Data.frame of speeds
load Load of the HDV
axle Number of axle of the HDV
Value

emission factors grams/km

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

Examples

## Not run:

data(net)

data(pc_profile)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)

df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
ef <- ef_wear(wear = "tyre"”, type = "PC", pol = "PM1Q@", speed = df)

## End(Not run)

ef_whe Emission factor that incorporates the effect of high emitters

Description

ef_whe return weighted emission factors of vehicles considering that one part of the fleet has a
normal deterioration and another has a deteriorated fleet that would be rejected in a inspection and
mantainence program but it is still in circulation. This emission factor might be applicable in cities
without a inspection and mantainence program and with Weighted emission factors considering that
part of the fleet are high emitters.

Usage
ef_whe(efhe, phe, ef)



50 emis

Arguments
efhe Numeric; Emission factors of high emitters vehicles. This vehicles would be
rejected in a inspection and mantainnence program.
phe Numeric; Percentage of high emitters.
ef Numeric; Emission factors deteriorated vehicles under normal conditions. These
vehicles would be approved in a inspection and mantainence program.
Value

An emission factor by annual mileage.

Examples

## Not run:

# Do not run

# Let's say high emitter is 5 times the normal ef.

co_efhe <- ef_cetesb(p = "C0d", "PC_G") * 5

# Let's say that the perfil of high emitters increases linearly
# till 30 years and after that percentage is constant

perc <- c(seq(@.01, 0.3, 0.01), rep(0.3, 20))

# Now, lets use our ef with normal deterioration
co_ef_normal <- ef_cetesb(p = "C0d", "PC_G")

efd <- ef_whe(efhe = co_efhe, phe = perc, ef = co_ef_normal)
# now, we can plot the three ef

plot(co_efhe)

lines(co_ef_normal, pch = 16, col = "red"” )

lines(efd, pch = 16, col = "blue")

## End(Not run)

emis Estimation of emissions

Description

emis estimates vehicular emissions as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed. E = VEH « LENGTH * EF(speed)

Usage

emis(
veh,
1km,
ef,
speed,
agemax = ifelse(is.data.frame(veh), ncol(veh), ncol(veh[[111)),
profile,



emis

51

simplify = FALSE,

fortran = FALSE,

hour = nrow(profile),

day = ncol(profile),

verbose = FALSE,

nt = ifelse(check_nt() == 1, 1, check_nt()/2)

)
Arguments

veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link. If this is a list, the length of the
list is the vehicles for each hour.

1km Length of each link in km

ef List of functions of emission factors

speed Speed data-frame with number of columns as hours. The default value is 34km/h

agemax Age of oldest vehicles for that category

profile Dataframe or Matrix with nrows equal to 24 and ncol 7 day of the week

simplify Logical; to determine if EmissionsArray should les dimensions, being streets,
vehicle categories and hours or default (streets, vehicle categories, hours and
days). Default is FALSE to avoid break old code, but the recommendation is
that new estimations use this parameter as TRUE

fortran Logical; to try the fortran calculation when speed is not used. I will add fortran
for EmissionFactorsList soon.

hour Number of considered hours in estimation. Default value is number of rows of
argument profile

day Number of considered days in estimation

verbose Logical; To show more information

nt Integer; Number of threads wich must be lower than max available. See check_nt.
Only when fortran = TRUE

Value

If the user applies a top-down approach, the resulting units will be according its own data. For
instance, if the vehicles are veh/day, the units of the emissions implicitly will be g/day.

Note

Hour and day will be deprecated because they can be infered from the profile matrix.

Examples

## Not run:
# Do not run
data(net)



52

emis

data(pc_profile)

data(profiles)

data(fe2015)

data(fkm)

PC_G <- c(
33491, 22340, 24818, 31808, 46458, 28574, 24856, 28972, 37818, 49050, 87923,
133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
84771, 55864, 36306, 21079, 20138, 17439, 7854, 2215, 656, 1262, 476, 512,
1181, 4991, 3711, 5653, 7039, 5839, 4257, 3824, 3068

)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

# Estimation for morning rush hour and local emission factors and speed

speed <- data.frame(S8 = net$ps)

lef <- EmissionFactorsList(ef_cetesb("C0", "PC_G", agemax = ncol(pcl)))

system.time(E_CO <- emis(veh = pc1, lkm = net$lkm, ef = lef, speed = speed))
system.time(E_CO_2 <- emis(veh = pc1, 1km = net$lkm, ef = lef, speed = speed, simplify = TRUE))
identical (E_CO, E_C0_2)

# Estimation for morning rush hour and local emission factors without speed
lef <- ef_cetesb("C0", "PC_G", agemax = ncol(pcl))

system.time(E_CO <- emis(veh = pc1, lkm = net$lkm, ef = lef))
system.time(E_CO_2 <- emis(veh = pc1, lkm = net$lkm, ef = lef, fortran = TRUE))
identical (E_CO, E_CO_2)

# Estimation for 168 hour and local factors and speed
pcw <- temp_fact(net$ldv + net$hdv, pc_profile)
speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
lef <- EmissionFactorsList(ef_cetesb("C0", "PC_G", agemax = ncol(pcl)))
system. time(

E_CO <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

speed = speed,
profile = profiles$PC_JUNE_2014
)
)

system. time(
E_CO_2 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

speed = speed,
profile = profiles$PC_JUNE_2014,
simplify = TRUE
)
)

# Estimation for 168 hour and local factors and without speed
lef <- ef_cetesb("C0", "PC_G", agemax = ncol(pcl))
system. time(

E_CO <- emis(



emis

veh = pcl,
1km = net$lkm,
ef = lef,
profile = profiles$PC_JUNE_2014
)
)
sum(E_CO)
system. time(
E_CO_2 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

profile = profiles$PC_JUNE_2014,
fortran = TRUE
)
)
sum(E_CO)
system. time(
E_CO_3 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

profile = profiles$PC_JUNE_2014,
simplify = TRUE
)
)
sum(E_CO)
system.time(
E_CO_4 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

profile = profiles$PC_JUNE_2014,
simplify = TRUE,
fortran = TRUE
)
)
sum(E_CO)
identical(round(E_CO, 2), round(E_CO_2, 2))
identical (round(E_CO_3, 2), round(E_CO0_4, 2))
identical (round(E_CO_3[, , 11, 2), round(E_CO_4[,
dim(E_CO_3)
dim(E_CO_4)
# but
a <- unlist(lapply(1:41, function(i) {
unlist(lapply(1:168, function(j) {
identical(E_CO_3[, i, j1, E_CO_4[, i, i1
1))
1))

unique(a)

# Estimation with list of vehicles
lpc <- list(pcl, pcl)

» 11,2)

53



54 EmissionFactors

lef <- EmissionFactorsList(ef_cetesb(”C0"”, "PC_G", agemax = ncol(pcl)))
E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed)

# top down

veh <- age_ldv(x = net$ldv[1:4], name = "PC_E25_1400", agemax = 4)
mil <- fkm$KM_PC_E25(1:4)

ef <- ef_cetesb(”"C0d", "PC_G")[1:4]

emis(veh, units::set_units(mil, "km"), ef)

# group online
bus1 <- age_hdv(30, agemax = 4)
veh <- bus]
1km <- units::set_units(400, "km")
speed <- 40
efco <- ef_cetesb(”"C0d"”, "UB", agemax = 4)
lef <- ef_hdv_scaled(

dfcol = as.numeric(efco),

v = "Ubus”,

t = "Std",

g = ">15 & <=18",

eu = rep("IV", 4),

gr =0,
1=o0.5,
b = "cor

)

for (i in 1:length(lef)) print(lefl[[i11(10))

(a <- emis(veh = busl1, lkm = lkm, ef = efco, verbose = TRUE))

(b <- emis(veh = busl1, lkm = lkm, ef = efco, verbose = TRUE, fortran = TRUE))

## End(Not run)

EmissionFactors Construction function for class "EmissionFactors"

Description

EmissionFactors returns a tranformed object with class "EmissionFactors" and units g/km.
Usage
EmissionFactors(x, mass = "g", dist = "km", ...)

## S3 method for class 'EmissionFactors'
print(x, ...)

## S3 method for class 'EmissionFactors'
summary (object, ...)

## S3 method for class 'EmissionFactors'



EmissionFactors 55

plot(
X ’
pal = "mpl_viridis”,
rev = TRUE,
figl = c(0, 0.8, 0, 0.8),
fig2 = c(0, 0.8, 0.55, 1),
fig3 = c(0.7, 1, 0, 0.8),
mail = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.62, 0.82, 0.42),
bias = 1.5,
)
Arguments
X Object with class "data.frame", "matrix" or "numeric"
mass Character to be the time units as numerator, default "g" for grams
dist String indicating the units of the resulting distance in speed.
ignored
object object with class "EmissionFactors’
pal Palette of colors available or the number of the position
rev Logical; to internally revert order of rgb color vectors.
figl par parameters for fig, par.
fig2 par parameters for fig, par.
fig3 par parameters for fig, par.
mail par parameters for mai, par.
mai2 par parameters for mai, par.
mai3 par parameters for mai, par.
bias positive number. Higher values give more widely spaced colors at the high end.
Value
Objects of class "EmissionFactors" or "units"
Examples
## Not run:
data(fe2015)
names(fe2015)
class(fe2015)
df <- fe2015[fe2015$Pollutant=="C0", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactors(df)
class(ef1)

summary (ef1)
plot(ef1)



56 EmissionFactorsList

print(ef1)

## End(Not run)

EmissionFactorsList Construction function for class "EmissionFactorsList"

Description

EmissionFactorslList returns a tranformed object with class"EmissionsFactorsList".

Usage

EmissionFactorsList(x, ...)

## S3 method for class 'EmissionFactorsList'
print(x, ..., default = FALSE)

## S3 method for class 'EmissionFactorsList'
summary (object, ...)

## S3 method for class 'EmissionFactorsList'

plot(x, ...)
Arguments
X Object with class "list"
. ignored
default Logical value. When TRUE prints default list, when FALSE prints messages
with description of list
object Object with class "EmissionFactorsList"
Value

Objects of class "EmissionFactorsList"

Examples

## Not run:

data(fe2015)

names(fe2015)

class(fe2015)

df <- fe2015[fe2015$Pollutant=="C0", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactorsList(df)

class(ef1)

length(ef1)

length(ef1[[11])

summary (ef1)



Emissions 57

ef1

## End(Not run)

Emissions Construction function for class "Emissions"

Description

Emissions returns a tranformed object with class "Emissions". The type of objects supported are
of classes "matrix", "data.frame" and "numeric". If the class of the object is "matrix" this function
returns a dataframe.

Usage

nen

Emissions(x, mass = "g", time, ...)

## S3 method for class 'Emissions'
print(x, ...)

## S3 method for class 'Emissions'
summary (object, ...)

## S3 method for class 'Emissions'

plot(
X,
pal = "colo_angelafaye_Coloured_sky_in",
rev = FALSE,
figl = c(o, 0.8, 0, 0.8),
fig2 = c(0, 0.8, 0.55, 1),
fig3 = c(0.7, 1, 0, 0.8),
mail = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.72, 0.82, 0.42),
main = NULL,
bias = 1.5,
)
Arguments
X Object with class "data.frame", "matrix" or "numeric"
mass Character to be the time units as numerator, default "g" for grams
time Character to be the time units as denominator, eg "h"
ignored

object object with class "Emissions"



58

pal Palette of colors available or the number of the position

rev Logical; to internally revert order of rgb color vectors.

figl par parameters for fig, par.

fig2 par parameters for fig, par.

fig3 par parameters for fig, par.

mail par parameters for mai, par.

mai2 par parameters for mai, par.

mai3 par parameters for mai, par.

main title of plot

bias positive number. Higher values give more widely spaced colors at the high end.
Value

Objects of class "Emissions" or "units"

Examples

## Not run:

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::as_units(fkm[[1]]1(1:24), "km"); pckma <- cumsum(pckm)

codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckma[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckmal[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", ] #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(col, cod, v = "PC", cc = "<=1400",

f="G", p="C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile)

dim(E_CO) # streets x vehicle categories x hours x days

class(E_CO)

plot(E_CO)

fizizisd

Emissions(1)

Emissions(1, time = "h")

## End(Not run)



EmissionsArray

EmissionsArray Construction function for class "EmissionsArray"”

Description

EmissionsArray returns a tranformed object with class "EmissionsArray" with 4 dimensios.
Usage
EmissionsArray(x, ...)

## S3 method for class 'EmissionsArray'
print(x, ...)

## S3 method for class 'EmissionsArray'
summary (object, ...)

## S3 method for class 'EmissionsArray'

plot(x, main = "average emissions”, ...)
Arguments
X Object with class "data.frame", "matrix" or "numeric"
ignored
object object with class "EmissionsArray’
main Title for plot
Value

Objects of class "EmissionsArray"

Note

Future version of this function will return an Array of 3 dimensions.

Examples

## Not run:

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)



60

pcl <- my_age(x

emis_chem

= net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]]1(1:24), "km"); pckma <- cumsum(pckm)
codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckmal[1:11])

cod2 <- emis_det(po = "CO0", cc = 1000, eu = "I", km = pckmal[12:24])
#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", 1 #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(col, cod, v = "PC", cc = "<=1400",

f ="G",p = "C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

class(E_CO)
summary (E_CO)

E_CO
plot(E_CO)

profile = pc_profile, simplify = TRUE)

lpc <- list(pcl, pcl)
E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

## End(Not run)

profile = pc_profile, hour = 2, day = 1)

emis_chem

Aggregate emissions by lumped groups in chemical mechanism

Description

emis_chem aggregates emissions by chemical mechanism and convert grams to mol. This function
reads all hydrocarbos and respective criteria polluants specified in ef_l1dv_speed and ef _hdv_speed.

Usage

emis_chem(dfe, mechanism, colby, long = FALSE)

Arguments

dfe

mechanism

colby

long

data.frame with column ‘emissions‘ in grams and ‘pollutant® in long format. It
is supposed that each line is the pollution of some region. Then the ‘coldby*
argument is for include the name of the region.

Character, "RADM?2_SORG", "CBMZ_MOSAIC", "CPTEC", "GOCART_CPTEC",
"MOZEM", "MOZCEM", "CAMMAM", "MOZMEM", "MOZC_T1_EM", "CB05_OPT1"
or "CB05_OPT2"

Character indicating column name for aggregating extra column. For instance,
region or province.

Logical. Do you want data in long format?



emis_chem?2 61

Value

data.frame with lumped groups by chemical mechanism. It transform emissions in grams to mol.

Note

This feature is experimental and the mapping of pollutants and lumped species may change in fu-
ture. This function is converting the intial data.frame input into data.table. To have a comprehensive
speciation is necessary enter with a data.frame with colum ’emission’ in long format including an-
other column named ’pollutant’ with species of NMHC, CO, NO, NO2, NH3, SO2, PM2.5 and
coarse PM10.

Groups derived from gases has units 'mol’ and from aersols ’g’. The aersol units for WRF-Chem
are ug/m”2/s while for CMAQ and CAMx are g/s. So, leaving the units just in g, allow to make
further change while providing flexibility for several models. TODO: Enter with wide data.frame,
with each line as a each street, each column for pollutant

See Also

ef_ldv_speed ef_hdv_speed speciate ef_evap

Examples

## Not run:

# CO

df <- data.frame(emission = Emissions(1:10))
df$pollutant = "CO"

emis_chem(df, "CBMZ_MOSAIC")

# hexanal

df$pollutant = "hexanal”

emis_chem(df, "CBMZ_MOSAIC")

# propadiene and NO2

df2 <- df1 <- df

df1$pollutant = "propadiene”

df2$pollutant = "NO2"

(dfe <- rbind(df1, df2))

emis_chem(dfe, "CBMZ_MOSAIC")

dfe$region <- rep(letters[1:2], 10)
emis_chem(dfe, "CBMZ_MOSAIC", "region")
emis_chem(dfe, "CBMZ_MOSAIC", "region", TRUE)

## End(Not run)

emis_chem?2 Aggregate emissions by lumped groups in chemical mechanism

Description

emis_chem?2 aggregates VOC emissions by chemical mechanism and convert grams to mol.



62

Usage

emis_chem?2

emis_chem2(df, mech, nx, na.rm = FALSE)

Arguments
df data.frame with emissions including columns "id" and "pol".
mech Character, "CB4", "CB05", "S99", "S7","CS7", "S7T", "S11", "S11D","S16C","S18B","RADM?2",
"RACM2","MOZT1", "CBMZ", "CB05opt2"
nx Character, colnames for emissions data, for instance "V1", "V2"...
na.rm Logical, to remove lines with NA from group
Value

data.frame with lumped groups by chemical mechanism.

Note

CBOS: nALDn ”ALDX" HETH" llHC3H vaCS" ”HCS” "HCHO" "KET" ||OL2|| llOLIn nOLTu
”TOL” ”XYL"

CBO05opt2: "ALD2" "ALDX" "BENZENE" "ETH" "ETHA" "FORM" "IOLE" "OLE" "PAR"
HTOL" ||XYL||

RADM2 HALDH llETHn ”HCS” HHCSH ”HCS" HHCHO" ”KET" HMACRH “OLZ“ ”OLI”
HOLT" HTOLH nXYLn

RACMZ: ACD" uACEn nACTn nALDu HBALDH nBENn "DIEN" nETEn nETHn an3u ”HCS"
uHC8n "HCHO” "MACR” nMEKn HOLIH ”OLT” vaOLu nUALDn vaYMu "XYO” vaYva

CB4: HALD2H ”ETH" HFORMH uOLEn ”PAR" HTOLH ”XYL"

S99: "ACET" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "AROINBZ" "ARO2" "BALD"
"BENZENE" "CCHO" "ETHENE" "HCHO" "IPROD" "MACR" "MEK" "OLE1" "OLE2"
"RCHO"

CB4: "ACET" "ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1" "ARO2" "BALD"
HBENZ" "CCHOII HETHEH "HCHOH "IPRDH HMACR" HMEKH "OLElll HOLEZ" IIRCHOH

CS7: "ALK3" "ALK4" "ARO1" "ARO2" "CCHO" "ETHE" "HCHO" "IPRD" "NROG" "OLE1"
IIOLEZYY llPRD2|| "RCHO"

S7: "ACET""ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALKS5" "ARO1" "ARO2" "BALD"
IIBENZ” IICCHOII ||ETHE|| VIHCHOH IIIPRD" ||MACR" IIMEKH "OLElll ||OLE2II IIRCHOH

S7T:"13BDE" "ACET" "ACRO" "ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1"
"ARO2" "B124" "BALD" "BENZ" "CCHO" "ETHE" "HCHO" "IPRD" "MACR" "MEK"
HMXYLH IIOLEIH HOLEZ" HOXYLH "PRPEH HPXYL" "RCHOH "TOLUH

S11: "ACET" "ACYL" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1" "ARO2" "BALD"
IIBENZH IICCHOII ||ETHE|| llHCHOH "IPRD'I HMACRII HMEKH llOLElll ||OLE2II IIRCHOH

S11D: "ACET" "ACRO" "ACYL" "ALLENE" "BALD" "BENZ" "BUTDE13" "BUTENE1"
"C2BENZ" "C2BUTE" "C2PENT" "C4RCHO1" "CCHO" "CROTALD" "ETACTYL" "ETHANE"
"ETHE" "HCHO" "HEXENE1" "ISOBUTEN" "M2C3" "M2C4" "M2C6" "M2C7" "M3C6"
"M3C7" "MACR" "MEACTYL" "MEK" "MXYLENE" "NCI1" "NC4" NC5" "NC6" "NC7"



emis_cold 63

"NC8" "NC9" "OLE2" "OTH2" "OTH4" "OTH5" "OXYLENE" "PENTEN1" "PROPALD"
"PROPANE" "PROPENE" "PXYLENE" "RCHO" "STYRENE" "TMB123" "TMB124" "TMB135"
"TOLUENE"

* S16C:"ACET" "ACETL" "ACRO" "ACYLS" "ALK3" "ALK4" "ALK5" "BALD" "BENZ"
"BUT13" "BZ123" "BZ124" "BZ135" "C2BEN" "ETCHO" "ETHAN" "ETHEN" "HCHO"
"MACR" "MECHO" "MEK" "MXYL" "NC4" "OLE1" "OLE2" "OLE3" "OLE4" "OLEA1"
"OTHI1" "OTH3" "OTH4" "OXYL" "PROP" "PROPE" "PXYL" "RCHO" "STYRS" "TOLU"

* S18B:"ACET" "ACETL" "ACRO" "ACYLS" "ALK3" "ALK4" "ALK5" "BALD" "BENZ"
"BUT13" "BZ123" "BZ124" "BZ135" "C2BEN" "ETCHO" "ETHAN" "ETHEN" "HCHO"
"MACR" "MECHO" "MEK" "MXYL" "NC4" "OLE1" "OLE2" "OLE3" "OLE4" "OLEA1"
"OTH1" "OTH3" "OTH4" "OXYL" "PROP" "PROPE" "PXYL" "RCHO" "STYRS" "TOLU"

References

Carter, W. P. (2015). Development of a database for chemical mechanism assignments for volatile
organic emissions. Journal of the Air & Waste Management Association, 65(10), 1171-1184.

See Also

speciate

Examples

{

id <-1:2

df <- data.frame(V1 = 1:2, V2 = 1:2)

dx <- speciate(

x = df,

spec = "nmhc”,

fuel = "E25",

veh = "LDV",

eu = "Exhaust”

)

dx$id <- rep(id, length(unique(dx$pol)))
names (dx)

VOCE25EX <- emis_chem2(df = dx,mech = "CB05",nx = c("V1", "V2"))
3

emis_cold Estimation of cold start emissions hourly for the of the week

Description

emis_cold emissions are estimated as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed.The estimation considers beta parameter, the frac-
tion of mileage driven



64

Usage

emis_cold(
veh,
1km,
ef,
efcold,
beta,
speed = 34,

emis_cold

agemax = if (!inherits(x = veh, what = "list")) { ncol(veh) } else {
ncol(veh[[1]]) 1},

profile,

simplify = FALSE,
hour = nrow(profile),
day = ncol(profile),

array = TRUE,

verbose = FALSE

Arguments

veh

1km
ef
efcold
beta

speed
agemax
profile
simplify

hour
day

array

verbose

Value

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link

Length of each link
List of functions of emission factors of vehicular categories
List of functions of cold start emission factors of vehicular categories

Datraframe with the hourly cold-start distribution to each day of the period.
Number of rows are hours and columns are days

Speed data-frame with number of columns as hours
Age of oldest vehicles for that category
Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

Logical; to determine if EmissionsArray should les dimensions, being streets,
vehicle categories and hours or default (streets, vehicle categories, hours and
days). Default is FALSE to avoid break old code, but the recommendation is
that new estimations use this parameter as TRUE

Number of considered hours in estimation
Number of considered days in estimation

Deprecated! emis_cold returns only arrays. When TRUE and veh is not a list,
expects a profile as a dataframe producing an array with dimensions (streets x
columns x hours x days)

Logical; To show more information

EmissionsArray g/h



emis_cold 65

Examples

## Not run:

# Do not run

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

data(pc_cold)

pcf <- as.data.frame(cbind(pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,

pc_cold))

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]1(1:24), "km"); pckma <- cumsum(pckm)

codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckma[1:11])
cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckmal[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", ] #24 obs!!!

cod <- c(col1$PC_G[1:24]*c(cod1,cod2),co1$PC_G[25:nrow(co1)])

lef <- ef_ldv_scaled(col, cod, v = "PC", cc = "<=1400",

f ="G",p = "CO", eu=col$Euro_LDV)

# Mohtly average temperature 18 Celcius degrees

lefec <- ef_ldv_cold_list(df = col, ta = 18, cc = "<=1400", f = "G",

eu = col$Euro_LDV, p = "CO" )

lefec <- c(lefec,lefec[length(lefec)], lefec[length(lefec)],

lefec[length(lefec)], lefec[length(lefec)],
lefec[length(lefec)])

length(lefec) == ncol(pcl)

#emis change length of 'ef' to match ncol of 'veh'

class(lefec)

PC_CO_COLD <- emis_cold(veh = pcl,

1km = net$lkm,

ef = lef,

efcold = lefec,

beta = pcf,

speed = speed,
profile = pc_profile)

class(PC_CO_COLD)

plot(PC_CO_COLD)

lpc <- list(pcl, pcl)

PC_CO_COLDv2 <- emis_cold(veh = pc1,

1km = net$lkm,

ef = lef,

efcold = lefec,

beta = pcf,

speed = speed,
profile = pc_profile,



66

emis_cold_td

hour = 2,
day = 1)

## End(Not run)

emis_cold_td

Estimation of cold start emissions with top-down approach

Description

emis_cold_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly
emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row
of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly
temperature. This funcion, as other in this package, adapts to the class of the input data. providing
flexibility to the user.

Usage

emis_cold_td(

veh,
1km,
ef,
efcold,
beta,

pro_month,

params,
verbose
fortran

FALSE,
FALSE,

nt = ifelse(check_nt() == 1, 1, check_nt()/2)

Arguments

veh

1km
ef
efcold

beta

pro_month

"Vehicles" data-frame or spatial feature, wwhere columns are the age distribu-
tion of that vehicle. and rows each simple feature or region. The number of rows
is equal to the number of streets link

Numeric; mileage by the age of use of each vehicle.
Numeric; emission factor with

Data.frame. When it is a data.frame, each column is for each type of vehicle by
age of use, rows are are each simple feature. When you have emission factors
for each month, the order should a data.frame ina long format, as rurned by
ef_ldv_cold.

Data.frame with the fraction of cold starts. The rows are the fraction for each
spatial feature or subregion, the columns are the age of use of vehicle.

Numeric; montly profile to distribuite annual mileage in each month.



emis_cold_td 67

params List of parameters; Add columns with information to returning data.frame
verbose Logical; To show more information

fortran Logical; to try the fortran calculation.

nt Integer; Number of threads wich must be lower than max available. See check_nt.

Only when fortran = TRUE

Value

Emissions data.frame

See Also
ef_ldv_cold

Examples

## Not run:
# Do not run
veh <- age_ldv(1:10, agemax = 8)
euros <- c("Vv", "y, "Iv" 6 "III”, "II", "I", "PRE", "PRE")
dt <- matrix(rep(2:25, 5), ncol = 12, nrow = 10) # 12 months, 10 rows
row.names(dt) <- paste@("”Simple_Feature_", 1:10)
efc <- ef_ldv_cold(ta = dt, cc = "<=1400", f = "G", eu = euros, p = "C0", speed = Speed(34))
efh <- ef_ldv_speed(
v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "C0", speed = Speed(runif(nrow(veh), 15, 40))
)
1km <- units::as_units(18:11, "km") * 1000
cold_lkm <- cold_mileage(ltrip = units::as_units(20, "km"), ta = celsius(dt))
names(cold_lkm) <- paste@("Month_", 1:12)
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system. time(
a <- emis_cold_td(

veh = veh,
1km = 1km,
ef = efh[1, 1,

efcold = efc[1:10, ],
beta = cold_lkm[, 1],
verbose = TRUE
)
)
system.time(
a2 <- emis_cold_td(

veh = veh,
1km = 1km,
ef = efh[1, 1],

efcold = efc[1:10, 1,
beta = cold_lkm[, 1],
verbose = TRUE,
fortran = TRUE



68

emis_det

) # emistd2coldf.f95

a$emissions <- round(a$emissions, 8)
a2$emissions <- round(a2%$emissions, 8)
identical(a, a2)

# Adding parameters
emis_cold_td(

veh = veh,
1km = 1km,
ef = efh[1, 1],

efcold = efc[1:10, 1,

beta = cold_lkm[, 11,

verbose = TRUE,

params = list(
paste@("data_", 1:10),
"moredata”

)

)

system.time(
aa <- emis_cold_td(

veh = veh,
1km = 1km,
ef = efh,
efcold = efc,

beta = cold_lkm,
pro_month = veh_month,
verbose = TRUE
)
)

system. time(
aa2 <- emis_cold_td(

veh = veh,
1km = 1km,
ef = efh,
efcold = efc,

beta = cold_lkm,
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE
)
) # emistd5coldf.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

## End(Not run)

emis_det Determine deterioration factors for urban conditions




emis_det 69

Description

emis_det returns deterioration factors. The emission factors comes from the guidelines for develop-

ing emission factors of the EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/eme;
eea-air-pollutant-emission-inventory-guidebook This function subset an internal database of emis-

sion factors with each argument

Usage

emis_det(
po,
cc,
eu,
speed = Speed(18.9),
km,
verbose = FALSE,
show.equation = FALSE

)
Arguments
po Character; Pollutant "CO", "NOx" or "HC"
cc Character; Size of engine in cc converin "<=1400", "1400_2000" or ">2000"
eu Character; Euro standard: "I", "II", "IIT", "III", "TV", "V", "VI", "VI¢"
speed Numeric; Speed to return Number of emission factor and not a function. It needs
units in km/h
km Numeric; accumulated mileage in km.
verbose Logical; To show more information

show.equation Option to see or not the equation parameters

Value

It returns a numeric vector representing the increase in emissions due to normal deterioring

Note

The deterioration factors functions are available for technologies euro "II", "III" and "IV". In order
to cover all euro technologies, this function assumes that the deterioration function of "III" and
"IV" applies for "V", "VI" and "VIc". However, as these technologies are relative new, accumulated
milage is low and hence, deteerioration factors small.

Examples

## Not run:

data(fkm)

pckm <- fkm[[111(1:24); pckma <- cumsum(pckm)

km <- units::set_units(pckmal[1:11], km)

# length eu = length km = 1

emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], show.equation = TRUE)



70 emis_dist

# length eu = length km = 1, length speed > 1

emis_det(po = "C0", cc = "<=1400", eu = "III", km = km[5], speed = Speed(1:10))
# length km != length eu error

# (codl <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(30),
# km = km[4]1))

# length eu = 1 length km > 1

emis_det(po = "C0", cc = "<=1400", eu = "III", km = km)

# length eu = 2, length km = 2 (if different length, error!)

(codl <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), km = km[4:5]))
# length eu = 2, length km = 2, length speed > 1

(cod1 <- emis_det(po = "C0", cc = "<=1400", eu = c("III", "IV"), speed = Speed(0:130),
km = km[4:51))

euros <- c("V","y" "y" eIyt "Iyt "Iy’ "III", "III", "III", "III")

# length eu = 2, length km = 2, length speed > 1

(codl <- emis_det(po = "CO0", cc = "<=1400", eu = euros, speed = Speed(1:100),
km = km[1:101))

codl <- as.matrix(codl1[, 1:111)

filled.contour(codl, col = cptcity::cpt(6277, n = 20))

filled.contour(codl, col = cptcity::lucky(n = 19))

euro <- c(rep("V", 5), rep("IV", 5), "III")

euros <- rbind(euro, euro)

(codl <- emis_det(po = "CO", cc = "<=1400", eu = euros, km = km))

## End(Not run)

emis_dist Allocate emissions into spatial objects (street emis to grid)

Description

emis_dist allocates emissions proportionally to each feature. "Spatial" objects are converter to
"sf" objects. Currently, 'LINESTRING’ or 'MULTILINESTRING’ supported. The emissions are
distributed in each street.

Usage

emis_dist(gy, spobj, pro, osm, verbose = FALSE)

Arguments
gy Numeric; a unique total (top-down)
spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf".
pro Matrix or data-frame profiles, for instance, pc_profile.
osm Numeric; vector of length 5, for instance, c(5, 3, 2, 1, 1). The first element

covers ‘'motorway’ and 'motorway_link. The second element covers ’trunk’ and
"trunk_link’. The third element covers *primary’ and *primary_link’. The fourth
element covers ’secondary’ and ’secondary_link’. The fifth element covers ’ter-
tiary’ and ’tertiary_link’.

verbose Logical; to show more info.



emis_evap 71

Note

When spobj is a ’Spatial’ object (class of sp), they are converted into ’sf’.

Examples

## Not run:

data(net)

data(pc_profile)

po <- 1000

t1 <- emis_dist(gy = po, spobj = net)

head(t1)

sum(t1$gy)

#t1 <- emis_dist(gy = po, spobj = net, osm = c(5, 3, 2, 1, 1) )
t1 <- emis_dist(gy = po, spobj = net, pro = pc_profile)

## End(Not run)

emis_evap Estimation of evaporative emissions

Description

emis_evap estimates evaporative emissions from EMEP/EEA emisison guidelines

Usage

emis_evap(
veh,
X)
ed,
hotfi,
hotc,
warmc,
carb = 0,
P,
params,
pro_month,
verbose = FALSE

Arguments

veh Numeric or data.frame of Vehicles with untis 'veh’.

X Numeric which can be either, daily mileage by age of use with units ’lkm’,
number of trips or number of proc. When it has units 'lkm’, all the emission
factors must be in *g/km’. When ed is in g/day, x it is the number of days
(without units). When hotfi, hotc or warmc are in g/trip, x it is the number of
trips (without units). When hotfi, hotc or warmc are in g/proced, x it is the
number of proced (without units).



72

ed

hotfi

hotc

warmc

carb

p

params
pro_month

verbose

Value

emis_evap

average daily evaporative emisisons. If x has units ’lkm’, the units of ed must
be ’g/km’, other case, this are simply g/day (without units).

average hot running losses or soak evaporative factor for vehicles with fuel in-
jection and returnless fuel systems. If x has units ’lkm’, the units of ed must be
“g/km’, other case, this are simply g/trip or g/proced

average running losses or soak evaporative factor for vehicles with carburator or
fuel return system for vehicles with fuel injection and returnless fuel systems. If
x has units "1km’, the units of ed must be *g/km’,

average cold and warm running losses or soak evaporative factor for vehicles
with carburator or fuel return system for vehicles with fuel injection and return-
less fuel systems. If x has units *1km’, the units of ed must be *g/km’,

fraction of gasoline vehicles with carburator or fuel return system.
Fraction of trips finished with hot engine

Character; Add columns with information to returning data.frame
Numeric; montly profile to distribuite annual mileage in each month.

Logical; To show more information

numeric vector of emission estimation in grams

Note

When veh is a "Vehicles" data.frame, emission factors are evaluated till the number of columns of
veh. For instance, if the length of the emision factor is 20 but the number of columns of veh is 10,
the 10 first emission factors are used.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

See Also

ef_evap

Examples

## Not run:

(a <- Vehicles(1:10))

(lkm <- units::as_units(1:10, "km"))

(ef <- EmissionFactors(1:10))

(ev <- emis_evap(veh = a, x = lkm, hotfi = ef))

## End(Not run)



emis_evap2

73

emis_evap2

Estimation of evaporative emissions 2

Description

emis_evap performs the estimation of evaporative emissions from EMEP/EEA emisison guidelines

with Tier 2.

Usage

emis_evap2(
veh,
name,
size,
fuel,
aged,
nd4,
nd3,
nd2,
nd1,
hs_nd4,
hs_nd3,
hs_nd2,
hs_nd1,
rl_nd4,
rl_nd3,
rl_nd2,
rl_nd1,
d_nd4,
d_nd3,
d_nd2,
d_nd1

Arguments

veh

name
size
fuel
aged
nd4

Total number of vehicles by age of use. If is a Isit of *Vehicles’ data-frames, it
will sum the columns of the eight element of the list representing the 8th hour.
It was chosen this hour because it is morning rush hour but the user can adapt
the data to this function

Character of type of vehicle
Character of size of vehicle
Character of fuel of vehicle
Age distribution vector. E.g.: 1:40

Number of days with temperature between 20 and 35 celcius degrees



74

nd3
nd2
nd1
hs_nd4

hs_nd3

hs_nd2

hs_nd1

rl_nd4

rl_nd3

rl_nd2

rl_nd1

d_nd4

d_nd3

d_nd2

d_nd1

Value

emis_evap2

Number of days with temperature between 10 and 25 celcius degrees
Number of days with temperature between 0 and 15 celcius degrees
Number of days with temperature between -5 and 10 celcius degrees

average daily hot-soak evaporative emissions for days with temperature between
20 and 35 celcius degrees

average daily hot-soak evaporative emissions for days with temperature between
10 and 25 celcius degrees

average daily hot-soak evaporative emissions for days with temperature between
0 and 15 celcius degrees

average daily hot-soak evaporative emissions for days with temperature between
-5 and 10 celcius degrees

average daily running losses evaporative emissions for days with temperature
between 20 and 35 celcius degrees

average daily running losses evaporative emissions for days with temperature
between 10 and 25 celcius degrees

average daily running losses evaporative emissions for days with temperature
between 0 and 15 celcius degrees

average daily running losses evaporative emissions for days with temperature
between -5 and 10 celcius degrees

average daily diurnal evaporative emissions for days with temperature between
20 and 35 celcius degrees

average daily diurnal evaporative emissions for days with temperature between
10 and 25 celcius degrees

average daily diurnal evaporative emissions for days with temperature between
0 and 15 celcius degrees

average daily diurnal evaporative emissions for days with temperature between
-5 and 10 celcius degrees

dataframe of emission estimation in grams/days

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

## Not run:
data(net)

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)



emis_grid

veh <- data.frame(PC_G = PC_G)
pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")
ef1 <- ef_evap(ef = "erhotc”,v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
dfe <- emis_evap2(veh = pcl,

name = "PC",

size = "<=1400",

fuel = "G",

aged = 1:ncol(pcl),

nd4 = 10,

nd3 = 4,

nd2 = 2,

ndl = 1,

hs_nd4 = ef1*1:ncol(pcl),

hs_nd3 = ef1%1:ncol(pcl),

hs_nd2 = ef1%1:ncol(pcl),

hs_nd1 = ef1*1:ncol(pcl),

d_nd4 = efl1x1:ncol(pcl),
d_nd3 = ef1x1:ncol(pcl),
d_nd2 = ef1x1:ncol(pcl),
d_nd1 = efl1x1:ncol(pcl),

rl_nd4 = ef1*1:ncol(pcl),
rl_nd3 = ef1*1:ncol(pcl),
rl_nd2 = ef1x1:ncol(pcl),
rl_ndl = ef1x1:ncol(pcl))
lpc <- list(pcl, pcl, pcl, pcl,
pcl, pcl, pcl, pcl)
dfe <- emis_evap2(veh = lpc,
name = "PC",
size = "<=1400",
fuel = "G",
aged = 1:ncol(pcl),
nd4 = 10,
nd3 = 4,
nd2 = 2,
ndl = 1,
hs_nd4 = ef1*1:ncol(pcl),
hs_nd3 = ef1%1:ncol(pcl),

hs_nd2 = ef1*1:ncol(pcl),
hs_nd1 = ef1*1:ncol(pcl),
d_nd4 = efl1x1:ncol(pcl),
d_nd3 = efl1x1:ncol(pcl),
d_nd2 = ef1x1:ncol(pcl),
d_nd1 = efl1x1:ncol(pcl),

rl_nd4 = ef1x1:ncol(pcl),
rl_nd3 = ef1*1:ncol(pcl),
rl_nd2 = ef1*1:ncol(pcl),
rl_ndl = ef1x1:ncol(pcl))

## End(Not run)

75

emis_grid Allocate emissions into a grid returning point emissions or flux




76 emis_grid

Description

emis_grid allocates emissions proportionally to each grid cell. The process is performed by inter-
section between geometries and the grid. It means that requires "sr" according with your location
for the projection. It is assumed that spobj is a Spatial*DataFrame or an "sf" with the pollutants in
data. This function returns an object of class "sf".

Itis

Usage

n

emis_grid(spobj = net, g, sr, type = "lines”, FN = "sum”, flux = TRUE, k = 1)

Arguments
spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
Vlsf".
g A grid with class "SpatialPolygonsDataFrame" or "sf".
sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.
type type of geometry: "lines", "points" or "polygons".
FN Character indicating the function. Default is "sum"
flux Logical, if TRUE, it return flux (mass / area / time (implicit)) in a polygon grid,
if false, mass / time (implicit) as points, in a similar fashion as EDGAR provide
data.
k Numeric to multiply emissions
Note

1) If flux = TRUE (default), emissions are flux = mass / area / time (implicit), as polygons. If
flux = FALSE, emissions are mass / time (implicit), as points. Time untis are not displayed
because each use can have different time units for instance, year, month, hour second, etc.

2) Therefore, it is good practice to have time units in ’spobj’. This implies that spobj MUST
include units!.

3) In order to check the sum of the emissions, you must calculate the grid-area in km”2 and
multiply by each column of the resulting emissions grid, and then sum.

4) If FN = "'sum'', is mass conservative!.

Examples

## Not run:

data(net)

g <- make_grid(net, 1/102.47/2) #500m in degrees

names(net)

netsf <- sf::st_as_sf(net)

netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g = g, sr= 31983)
plot(netg["”1dv"], axes = TRUE)

plot(netg[”hdv"], axes = TRUE)



emis_hot_td 77

netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g = g, sr= 31983, FN = "mean")
plot(netg["”1dv"], axes = TRUE)

plot(netg[”hdv"], axes = TRUE)

netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g
plot(netg["”1dv"], axes = TRUE, pch = 16,

pal = cptcity::cpt(colorRampPalette= TRUE, rev = TRUE), cex = 3)

g, sr= 31983, flux = FALSE)

## End(Not run)

emis_hot_td Estimation of hot exhaust emissions with top-down approach

Description

emis_hot_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly
emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row
of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly
temperature. This funcion, as other in this package, adapts to the class of the input data. providing
flexibility to the user.

Usage

emis_hot_td(
veh,
1km,
ef,
pro_month,
params,
verbose = FALSE,
fortran = FALSE,
nt = ifelse(check_nt() == 1, 1, check_nt()/2)

)
Arguments

veh "Vehicles" data-frame or spatial feature, where columns are the age distribution
of that vehicle. and rows each simple feature or region.

1km Numeric; mileage by the age of use of each vehicle.

ef Numeric or data.frame; emission factors. When it is a data.frame number of
rows can be for each region, or also, each region repeated along 12 months. For
instance, if you have 10 regions the number of rows of ef can also be 120 (10 *
120). when you have emission factors that varies with month, see ef_china.

pro_month Numeric or data.frame; montly profile to distribuite annual mileage in each

month. When it is a data.frame, each region (row) can have a different monthly
profile.



78 emis_hot_td

params List of parameters; Add columns with information to returning data.frame
verbose Logical; To show more information

fortran Logical; to try the fortran calculation.

nt Integer; Number of threads wich must be lower than max available. See check_nt.

Only when fortran = TRUE

Details
List to make easier to use this function.

. ‘pro_month° is data.frame AND rows of ‘ef* and ‘veh‘ are equal.
. ‘pro_month‘ is numeric AND rows of ‘ef* and ‘veh* are equal.
. ‘pro_month‘ is data.frame AND rows of ‘ef* is 12X rows of ‘veh‘.

. ‘pro_month‘ is numeric AND rows of ‘ef* is 12X rows of ‘veh°.

. ‘pro_month‘ is numeric AND class of ‘ef* is ’units’.
. NO ‘pro_month* AND class of ‘ef* is "units’.

1
2
3
4
5. ‘pro_month* is data,frame AND class of ‘ef‘ is "units’.
6
7
8. NO ‘pro_month‘ AND ‘ef* is data.frame.

9

. ‘pro_month‘ is numeric AND rows of ‘ef* is 12 (monthly ‘ef*).

Value

Emissions data.frame

See Also

ef_ldv_speed ef_china

Examples

## Not run:
# Do not run
euros <- c("v", "v", "1v",6 "IIIr", "Ir", "I", "PRE", "PRE")
efh <- ef_ldv_speed(
v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "C0", speed = Speed(34)
)
1km <- units::as_units(c(20:13), "km") * 1000
veh <- age_ldv(1:10, agemax = 8)
system. time(
a <- emis_hot_td(
veh = veh,
1km = 1lkm,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
verbose = TRUE
)
)

system.time(



emis_hot_td 79

a2 <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
verbose = TRUE,
fortran = TRUE
)
) # emistd7f.f95
identical(a, a2)

# adding columns
emis_hot_td(
veh = veh,
lkm = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
verbose = TRUE,
params = list(paste@("data_", 1:10), "moredata”)
)

# monthly profile (numeric) with numeric ef
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system.time(
aa <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
pro_month = veh_month,
verbose = TRUE
)
)
system.time(
aa2 <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE
)
) # emistd5f.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

# monthly profile (numeric) with data.frame ef
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
def <- matrix(EmissionFactors(as.numeric(efh[, 1:81)),

nrow = nrow(veh), ncol = ncol(veh), byrow = TRUE
)
def <- EmissionFactors(def)
system. time(

aa <- emis_hot_td(

veh = veh,



80

1km = 1lkm,
ef = def,
pro_month = veh_month,
verbose = TRUE
)
)

system.time(
aa2 <- emis_hot_td(

veh = veh,
1km = 1km,
ef = def,

pro_month = veh_month,
verbose = TRUE,
fortran = TRUE
)
) # emistd1f.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

# monthly profile (data.frame)
dfm <- matrix(c(rep(8, 1), rep(10, 5), 9,
nrow = 10, ncol = 12,
byrow = TRUE
)
system.time(
aa <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[,
pro_month = dfm,
verbose = TRUE
)
)

system.time(
aa2 <- emis_hot_td(
veh = veh,
lkm = 1km,
ef = EmissionFactors(as.numeric(efh[,
pro_month = dfm,
verbose = TRUE,
fortran = TRUE
)
) # emistd6f.f95
aa$emissions <- round(aa$emissions, 2)
aa2$emissions <- round(aa2$emissions, 2)
identical(aa, aa2)

rep(1e, 5)),

1:81)),

1:81)),

emis_hot_td

# Suppose that we have a EmissionsFactor data.frame with number of rows for each month

# number of rows are 10 regions
# number of columns are 12 months

tem <- runif(n = 6 * 10, min = -10, max =

35)

temp <- c(rev(tem[order(tem)]), tem[order(tem)])



emis_hot_td

plot(temp)

dftemp <- celsius(matrix(temp, ncol = 12))

dfef <- ef_evap(

)

dim(dfef) # 120 rows and 9 columns, 8 ef (g/km) and 1 for month

ef = c(rep("eshotfi”, 8)),
v = "PC”,

cc = "<=1400",
dt = dftemp,
show = F,

ca = "small”,

ltrip = units::set_units(10, km),
pollutant = "NMHC"

system.time(

)

aa <- emis_hot_td(

veh = veh,
lkm = 1km,
ef = dfef,

pro_month = veh_month,
verbose = TRUE

)

system.time(

)

aa$emissions <- round(aa$emissions, 2)
aa2$emissions <- round(aa2$emissions, 2)

aa2 <- emis_hot_td(

veh = veh,
lkm = 1km,
ef = dfef,

pro_month = veh_month,
verbose = TRUE,
fortran = TRUE

)
# emistd3f.f95

identical(aa, aa2)

plot(aggregate(aa$emissions, by = list(aa$month), sum)$x)

81

# Suppose that we have a EmissionsFactor data.frame with number of rows for each month
# monthly profile (data.frame)
system.time(

)

aa <- emis_hot_td(

veh = veh,
1km = 1km,
ef = dfef,

pro_month = dfm,
verbose = TRUE
)

system.time(

aa2 <- emis_hot_td(
veh = veh,
1km = 1km,
ef = dfef,



82 emis_merge

pro_month = dfm,

verbose = TRUE,

fortran = TRUE

)

) # emistd4f.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)
plot(aggregate(aa$emissions, by = list(aa$month), sum)$x)

## End(Not run)

emis_merge Merge several emissions files returning data-frames or ’sf’ of lines

Description

emis_merge reads rds files and returns a data-frame or an object of ’spatial feature’ of streets,
merging several files.

Usage

emis_merge(
pol = "CO",
what = "STREETS.rds",
streets = T,
net,
FN = "sum”,
ignore,
path = "emi”,
crs,
under = "after”,
as_list = FALSE,
k=1,
verbose = TRUE

Arguments

pol Character. Pollutant.

what Character. Word to search the emissions names, "STREETS", "DF" or whatever

name. It is important to include the extension .’rds’. For instance, If you have
several files "XX_CO_STREETS.rds", what should be "STREETS.rds"

streets Logical. If true, emis_merge will read the street emissions created with emis_post
by "streets_wide", returning an object with class ’sf’. If false, it will read the
emissions data-frame and rbind them.



emis_order 83

net ’Spatial feature’ or ’SpatialLinesDataFrame’ with the streets. It is expected #
that the number of rows is equal to the number of rows of street emissions. If #’
not, the function will stop.

FN Character indicating the function. Default is "sum"

ignore Character; Which pollutants or other charavter would you like to remove?

path Character. Path where emissions are located

crs coordinate reference system in numeric format from http://spatialreference.org/
to transform/project spatial data using sf::st_transform

under "Character"; "after" when you stored your pollutant x as *X_’ "before" when
’_X’ and "none" for merging directly the files.

as_list "Logical"; for returning the results as list or not.

k factor

verbose Logical to display more information or not. Default is TRUE

Value

’Spatial feature’ of lines or a dataframe of emissions

Examples

## Not run:
# Do not run

## End(Not run)

emis_order Re-order the emission to match specific hours and days

Description

Emissions are ususally estimated for a year, 24 hours or one week from monday to sunday (with
168 hours). This depends on the availability of traffic data. When an air quality simulation is going
to be done, they cover specific periods of time. For instance, WRF Chem emissions files supports
periods of time, or two emissions sets for a representative day (0-12z 12-0z). Also a WRF Chem
simulation scan starts a thursday at 00:00 UTC, cover 271 hours of simulations, but hour emissions
are in local time and cover only 168 hours starting on monday. This function tries to transform our
emissions in local time to the desired utc time, by recycling the local emissions.

Usage

emis_order(
X,
1t_emissions,
start_utc_time,



84 emis_order

desired_length,
tz_1t = Sys.timezone(),
seconds = 0,

k=1,
net,
verbose = TRUE
)
Arguments
X one of the following:

* Spatial object of class "Spatial". Columns are hourly emissions.
* Spatial Object of class "sf". Columns are hourly emissions.

"non

e "data.frame", "matrix" or "Emissions".
In all cases, columns are hourly emissions.

1t_emissions Local time of the emissions at first hour. It must be the before time of start_utc_time.
For instance, if start_utc_time is 2020-02-02 00:00, and your emissions starts
monday at 00:00, your It_emissions must be 2020-01-27 00:00. The argument
tz_lt will detect your current local time zone and do the rest for you.

start_utc_time UTC time for the desired first hour. For instance, the first hour of the namelist.input
for WRF.

desired_length Integer; length to recycle or subset local emissions. For instance, the length of
the WRF Chem simulations, states at namelist.input.

tz_1t Character, Time zone of the local emissions. Default value is derived from
Sys.timezone(), however, it accepts any other. If you enter a wrong tz, this
function will show you a menu to choose one of the 697 time zones available.

seconds Number of seconds to add
k Numeric, factor.
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING".
verbose Logical, to show more information, default is TRUE.
Value

sf or data.frame

See Also

GriddedEmissionsArray

Examples

## Not run:

#do not run
data(net)
data(pc_profile)
data(fe2015)



emis_paved 85

data(fkm)

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]](1:24), "km")

pckma <- cumsum(pckm)

codl <- emis_det(po = "CO0", cc = 1000, eu = "III", km = pckmal[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckma[12:24])

#tvehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", 1 #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(col, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)

class(E_CO)

E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO0", by = "streets”, net = net)

g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees

E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)

head(E_CO_g) #class sf

gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, T)

wCO <- emis_order(x = E_CO_g,

1t_emissions = "2020-02-19 00:00",
start_utc_time = "2020-02-20 00:00",
desired_length = 241)

## End(Not run)

emis_paved Estimation of resuspension emissions from paved roads

Description

emis_paved estimates vehicular emissions from paved roads. The vehicular emissions are esti-
mated as the product of the vehicles on a road, length of the road, emission factor from AP42 13.2.1
Paved roads. It is assumed dry hours and anual aggregation should consider moisture factor. It
depends on Average Daily Traffic (ADT)

Usage

emis_paved(
veh,
adt,
1km,



86 emis_paved

k =0.62,
sL1 = 0.6,
sL2 = 0.2,
sL3 = 0.06,
sL4 = 0.03,
W,
net = net
)
Arguments
veh Numeric vector with length of elements equals to number of streets It is an array
with dimenssions number of streets X hours of day x days of week
adt Numeric vector of with Average Daily Traffic (ADT)
1km Length of each link
k K_PM30 = 3.23 (g/vkm), K_PMI15 = 0.77 (g/vkm), K_PM10 = 0.62 (g/vkm)
and K_PM2.5 =0.15 (g/vkm).
sL1 Silt loading (g/m2) for roads with ADT <= 500
sL2 Silt loading (g/m2) for roads with ADT > 500 and <= 5000
sL3 Silt loading (g/m2) for roads with ADT > 5000 and <= 1000
sL4 Silt loading (g/m2) for roads with ADT > 10000
W array of dimensions of veh. It consists in the hourly averaged weight of traffic
fleet in each road
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
Value

emission estimation g/h

Note

silt values can vary a lot. For comparison:

ADT US-EPA g/m2 CENMA (Chile) g/m2
<500 0.6 24
500-5000 0.2 0.7
5000-1000 0.06 0.6
>10000 0.03 0.3

References

EPA, 2016. Emission factor documentation for AP-42. Section 13.2.1, Paved Roads. https://www3.epa.gov/ttn/chief/ap42/ch

CENMA Chile: Actualizacion de inventario de emisiones de contaminntes atmosfericos RM 2020
Universidad de Chile#



emis_post 87

Examples

## Not run:

# Do not run

veh <- matrix(1000, nrow = 10,ncol = 10)

W <- veh*1.5

lkm <- 1:10

ADT <-1000:1010

emi <- emis_paved(veh = veh, adt = ADT, lkm = lkm, k = 0.65, W = W)
class(emi)

head(emi)

## End(Not run)

emis_post Post emissions

Description

emis_post simplify emissions estimated as total per type category of vehicle or by street. It reads
EmissionsArray and Emissions classes. It can return an dataframe with hourly emissions at each
street, or a data base with emissions by vehicular category, hour, including size, fuel and other

characteristics.
Usage

emis_post(arra, veh, size, fuel, pollutant, by = "veh", net, type_emi, k = 1)
Arguments

arra Array of emissions 4d: streets x category of vehicles x hours x days or 3d: streets

x category of vehicles x hours

veh Character, type of vehicle

size Character, size or weight

fuel Character, fuel

pollutant Pollutant

by Type of output, "veh" for total vehicular category , "streets_narrow" or "streets".

"streets" returns a dataframe with rows as number of streets and columns the
hours as days*hours considered, e.g. 168 columns as the hours of a whole week
and "streets repeats the row number of streets by hour and day of the week

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING". Only when by =
“streets_wide’

type_emi Character, type of emissions(exhaust, evaporative, etc)

k Numeric, factor



88 emis_post

Note

This function depends on EmissionsArray objests which currently has 4 dimensions. However, a
future version of VEIN will produce EmissionsArray with 3 dimensiones and his fungeorge soros
drugsction also will change. This change will be made in order to not produce inconsistencies with
previous versions, therefore, if the user count with an EmissionsArry with 4 dimension, it will be
able to use this function.

Examples

## Not run:

# Do not run

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

# Estimation for morning rush hour and local emission factors

speed <- data.frame(S8 = net$ps)

plh <= matrix(1)

lef <- EmissionFactorsList(fe2015[fe2015%$Pollutant=="C0", "PC_G"])

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed,

profile = p1h)

E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "C0"”, by = "streets_wide")

summary (E_CO_STREETS)

E_CO_STREETSsf <- emis_post(arra = E_CO, pollutant = "CO",

by = "streets”, net = net)

summary (E_CO_STREETSsf)

plot (E_CO_STREETSsf, main = "CO emissions (g/h)")

# arguments required: arra, veh, size, fuel, pollutant ad by

E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",

pollutant = "C0", by = "veh")

# Estimation 168 hours

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]1(1:24),"km"); pckma <- cumsum(pckm)

codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckma[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckmal[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", ] #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(dfcol = cod, v = "PC", cc = "<=1400",

f = "G",p = "C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile)

# arguments required: arra, pollutant ad by

E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "C0", by = "streets")

summary (E_CO_STREETS)



emis_source 89

# arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "C0", by = "veh")
head (E_CO_DF)
# recreating 24 profile
lpc <-list(pcl1*0.2, pcl1*0.1, pcl1*0.1, pcl*0.2, pcl1*0.5, pcl1*0.8,
pcl, pcl*1.1, pcl,
pc1x0.8, pcl*0.5, pcl1*0.5,
pc1*0.5, pc1*0.5, pcl1*0.5, pc1%0.8,
pcl, pcl*1.1, pcl,
pc1*0.8, pcl1*0.5, pc1*0.3, pcl*0.2, pcl*0.1)
E_COv2 <- emis(veh = lpc, 1lkm = net$lkm, ef = lef, speed = speed[, 1:24],
agemax = 41, hour = 24, day = 1)
plot(E_COv2)
E_CO_DFv2 <- emis_post(arra = E_COv2,

veh = "PC",
size = "<1400",
fuel = "G",

type_emi = "Exhaust”,
pollutant = "CO0", by = "veh")
head(E_CO_DFv2)

## End(Not run)

emis_source A function to source vein scripts

Description

emis_source source vein scripts

Usage

emis_source(
path = "est"”,
pattern = ".R",
ignore = "~",
first,
ask = TRUE,
recursive = TRUE,
full.names = TRUE,
echo = FALSE

Arguments

path Character; path to source scripts. Default is "est".

pattern Character; extensions of R scripts. Default is ".R".



90

ignore

first

ask
recursive
full.names

echo

Examples

## Not run:
# Do not run

## End(Not run)

emis_to_streets

Character; caracter to be excluded. Default is "~". Sometimes, the OS creates
automatic back-ups, for instance "run.R~", the ideia is to avoid sourcing these
files.

Character; first script.

Logical; Check inputs or not. Default is "FALSE". It allows to stop inputs
Logical; recursive or not. Default is "TRUE"

Logical; full.names or not. Default is "TRUE".

Source with echo?

emis_to_streets

Emis to streets distribute top-down emissions into streets

Description

emis_to_streets allocates emissions proportionally to each feature. "Spatial" objects are con-
verter to "sf" objects. Currently, "LINESTRING’ or "MULTILINESTRING’ supported. The emis-
sions are distributed in each street.

Usage
emis_to_streets(streets, dfemis, by = "ID", stpro, verbose = TRUE)
Arguments
streets sf object with geometry "LINESTRING’ or 'MULTILINESTRING’. Or Spa-
tialLinesDataFrame
dfemis data.frame with emissions
by Character indicating the columns that must be present in both ’street’ and *dfemis’
stpro data.frame with two columns, category of streets and value. The name of the
first column must be "stpro" and the sf streets must also have a column with the
nam "stpro" indicating the category of streets. The second column must have
the name "VAL" indicating the associated values to each category of street
verbose Logical; to show more info.
Note

When spobj is a *Spatial’ object (class of sp), they are converted into ’sf’.



emis_wear
See Also
add_polid
Examples
## Not run:
data(net)
stpro = data.frame(stpro = as.character(unique(net$tstreet)),

VAL = 1:9)
dnet <- net["ldv"]
dnet$stpro <- as.character(net$tstreet)
dnet$ID <- "A"
df2 <- data.frame(BC = 10, CO = 20, ID = "A")
ste <- emis_to_streets(streets = dnet, dfemis = df2)
sum(ste$ldv)
sum(net$ldv)
sum(ste$BC)
sum(df2$BC)
ste2 <- emis_to_streets(streets = dnet, dfemis = df2, stpro = stpro)
sum(ste2$ldv)
sum(net$ldv)
sum(ste2$BC)
sum(df2$BC)

## End(Not run)

91

emis_wear Emission estimation from tyre, break and road surface wear

Description

emis_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

emis_wear(
veh,
1km,
ef,
what = "tyre",
speed,
agemax = ncol(veh),
profile,
hour = nrow(profile),
day = ncol(profile)



92 fe2015

Arguments
veh Object of class "Vehicles"
1km Length of the road in km.
ef list of emission factor functions class "EmissionFactorsList", length equals to
hours.
what Character for indicating "tyre", "break" or "road"
speed Speed data-frame with number of columns as hours
agemax Age of oldest vehicles for that category
profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour Number of considered hours in estimation
day Number of considered days in estimation
Value

emission estimation g/h

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

Examples

## Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv[1:10] + net$hdv[1:10], pc_profile[, 1])
df <- netspeed(pc_week, net$ps[1:10], net$ffs[1:10],
net$capacity[1:10]1, net$lkm[1:10], alpha = 1)
ef <- ef_wear(wear = "tyre"”, type = "PC", pol = "PM1Q@", speed = df)
emi <- emis_wear(veh = age_ldv(net$ldv[1:10], name = "VEH"),
1km = net$lkm[1:10], ef = ef, speed = df,
profile = pc_profile[, 11)

emi

## End(Not run)

fe2015 Emission factors from Environmental Agency of Sao Paulo CETESB

Description

A dataset containing emission factors from CETESB and its equivalency with EURO



fkm 93

Usage
data(fe2015)

Format
A data frame with 288 rows and 12 variables:

Age Age of use

Year Year of emission factor

Pollutant Pollutants included: "CH4", "CO", "CO2", "HC", "N20", "NMHC", "NOx", and "PM"
Proconve_LDV Proconve emission standard: "PP", "L1", "L2", "L3", "L4", "L5", "L6"
t_Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "IT", "II","IV", "V"
Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "IT", "IIT","IV", "V"
Proconve_HDV Proconve emission standard: "PP", "P1", "P2", "P3", "P4", "P5", "P7"
Euro_HDV Euro emission standard equivalence: "PRE", "I", "II", "III", "V"

PC_G CETESB emission standard for Passenger Cars with Gasoline (g/km)

LT CETESB emission standard for Light Trucks with Diesel (g/km)

Source

CETESB

fkm List of functions of mileage in km fro Brazilian fleet

Description

Functions from CETESB: Antonio de Castro Bruni and Marcelo Pereira Bales. 2013. Curvas de
intensidade de uso por tipo de veiculo automotor da frota da cidade de Sao Paulo This functions
depends on the age of use of the vehicle

Usage
data(fkm)

Format

A data frame with 288 rows and 12 variables:

KM_PC_E25 Mileage in km of Passenger Cars using Gasoline with 25% Ethanol
KM_PC_E100 Mileage in km of Passenger Cars using Ethanol 100%

KM_PC_FLEX Mileage in km of Passenger Cars using Flex engines

KM_LCV_E25 Mileage in km of Light Commercial Vehicles using Gasoline with 25% Ethanol
KM_LCV_FLEX Mileage in km of Light Commercial Vehicles using Flex



94 fuel _corr

KM_PC_BS Mileage in km of Passenger Cars using Diesel with 5% biodiesel
KM_TRUCKS_BS Mileage in km of Trucks using Diesel with 5% biodiesel

KM_BUS_BS5 Mileage in km of Bus using Diesel with 5% biodiesel

KM_LCV_BS Mileage in km of Light Commercial Vehicles using Diesel with 5% biodiesel
KM_SBUS_BS Mileage in km of Small Bus using Diesel with 5% biodiesel
KM_ATRUCKS_BS5 Mileage in km of Articulated Trucks using Diesel with 5% biodiesel
KM_MOTO_E25 Mileage in km of Motorcycles using Gasoline with 25% Ethanol
KM_LDV_GNYV Mileage in km of Light Duty Vehicles using Natural Gas

Source

CETESB

fuel_corr Correction due Fuel effects

Description

Take into account the effect of better fuels on vehicles with older technology. If the ratio is less than
1, return 1. It means that it is nota degradation function.

Usage
fuel_corr(
euro,
g = c(e100 = 52, aro = 39, 02 = 0.4, el150 = 86, olefin = 10, s = 165),
d = c(den = 840, pah = 9, cn = 51, t95 = 350, s = 400)
)
Arguments
euro Character; Euro standards ("PRE", "I", "II", "IIT", "IV", "V", VI, "VIc")
g Numeric; vector with parameters of gasoline with the names: e100(vol. (sul-
phur, ppm)
d Numeric; vector with parameters for diesel with the names: den (density at 15
celcius degrees kg/m3), pah ( (Back end distillation in Celcius degrees) and s
(sulphur, ppm)
Value

A list with the correction of emission factors.



get_project 95

Note

This function cannot be used to account for deterioration, therefore, it is restricted to values between
0 and 1. Parameters for gasoline (g):

02 = Oxygenates in

S = Sulphur content in ppm
ARO = Aromatics content in
OLEFIN = Olefins content in
E100 = Mid range volatility in
E150 = Tail-end volatility in
Parameters for diesel (d):

DEN = Density at 15 C (kg/m3)
S = Sulphur content in ppm
PAH = Aromatics content in
CN = Cetane number

T95 = Back-end distillation in o C.

Examples

## Not run:
f <- fuel_corr(euro = "I")
names (f)

## End(Not run)

get_project Download vein project

Description

get_project downloads a project for running vein. The projects are available on Github.com/atmoschem/vein/projects

Usage
get_project(directory, case = "brasil”, url)
Arguments
directory Character; Path to an existing or a new directory to be created.
case Character; One of of the following:
case Description EF
brazil or brazil_bu or brasil or brasil_bu Bottom-up CETESB

emislacovid Bottom-up March 2020 CETESB



96

brazil_bu_csvgz
brazil_csv

brazil td_chem
brazil_bu_chem
brazil_bu_chem_streets

GriddedEmissionsArray

Bottom-up

Bottom-up. Faster but heavier

Top-down with chemical mechanisms

Bottom-up chemical mechanisms

Bottom-up chemical mechanisms for streets and MUNICH

sebr_cb05co2 Top-down SP, MG and RJ
amazon2014 Top-down Amazon
curitiba Bottom-down +GTFS
masp2020 Bottom-down
ecuador_td Top-down
ecuador_td_hot Top-down
ecuador_td_hot_month Top-down
moves Bottom-up

url String, with the URL to download VEIN project

Note

default case can be any of "brasil", "brazil", "brazil_bu", "brasil_bu", they are the same Projects for
Ecuador are in development. In any case, if you find any error, please, send a pull request in github

or gitlab.

Examples

## Not run:
#do not run

get_project("awesomecity")

## End(Not run)

GriddedEmissionsArray Construction function for class "GriddedEmissionsArray"

Description

GriddedEmissionsArray returns a transformed object with class "EmissionsArray" with 4 dimen-

sions.

CETESB-+tunnel
CETESB
CETESB
CETESB+tunnel
CETESB+tunnel
CETESB+tunnel
CETESB+tunnel
CETESB+tunnel
CETESB+tunnel
EEA

EEA

EEA

US/EPA MOVES

P = T = Y -

Usage

GriddedEmissionsArray(x, ., cols, rows, times = ncol(x), rotate = "default")

## S3 method for class 'GriddedEmissionsArray'
print(x, ...)

## S3 method for class 'GriddedEmissionsArray'



GriddedEmissionsArray 97

summary (object, ...)

## S3 method for class 'GriddedEmissionsArray'

plot(x, ..., times = 1)
Arguments
X Object with class "SpatialPolygonDataFrame", "sf" "data.frame" or "matrix"
ignored
cols Number of columns
rows Number of rows
times Number of times
rotate Character, rotate array:"default”, "left", "right", "cols","rows", "both", "br", "colsbr",
"rowsbr", "bothbr". br means starting a matrix byrow
object object with class "EmissionsArray’
Value

Objects of class "GriddedEmissionsArray"

Examples

## Not run:

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]](1:24), "km")

pckma <- cumsum(pckm)

codl <- emis_det(po = "CO", cc = 1000, eu = "III", km = pckmal[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckma[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", ] #24 obs!!!

cod <- c(col1$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(co1)])

lef <- ef_ldv_scaled(col, cod, v = "PC", t = "4S", cc = "<=1400",

f = "G",p = "C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)

class(E_CO)

E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "CO0", by = "streets”,

net = net, k = units::set_units(1, "1/h"))

g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees



98 grid_emis

E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)
plot(E_CO_g["Vv9"”1)
# check all
rots <- c("default”, "left", "right",

"cols"”,"rows", "both",

"br", "colsbr”, "rowsbr"”, "bothbr")
oldpar <- par()
par(mfrow = c(2,5))
lg <- lapply(seg_along(rots), function(i){

X <- GriddedEmissionsArray(E_CO_g,

rows = 19,
cols = 23,
times = 168,

rotate = rots[i])
plot(x, main = rots[i])
»
par(mfrow = c(1,1))

## End(Not run)

grid_emis Allocate emissions gridded emissions into streets (grid to emis street)

Description

grid_emis it is sort of the opposite of emis_grid. It allocates gridded emissions into streets. This
function applies emis_dist into each grid cell using lapply. This function is in development and
pull request are welcome.

Usage
grid_emis(spobj, g, top_down = FALSE, sr, pro, char, verbose = FALSE)

Arguments

spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
Vlsf".

g A grid with class "SpatialPolygonsDataFrame" or "sf". This grid includes the
total emissions with the column "emission". If profile is going to be used, the
column ’emission’ must include the sum of the emissions for each profile. For
instance, if profile covers the hourly emissions, the column ’emission’ bust be
the sum of the hourly emissions.

top_down Logical; requires emissions named ‘emissions‘ and allows to apply profile fac-

tors. If your data is hourly emissions or a a spatial grid with several emissions at
different hours, being each hour a column, it is better to use top_down = FALSE.
In this way all the hourly emissions are considered, however, eah hourly emis-
sions has to have the name "V" and the number of the hour like "V1"



grid_emis 99
sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.
pro Numeric, Matrix or data-frame profiles, for instance, pc_profile.
char Character, name of the first letter of hourly emissions. New variables in R start
with letter "V", for your hourly emissions might start with letter "h". This option
applies when top_down is FALSE. For instance, if your hourly emissions are:
"hl ll’ llhzﬂ’ llh3H..‘ ‘Char“ Can be llh"
verbose Logical; to show more info.
Note

Your gridded emissions might have flux units (mass / area / time(implicit)) You must multiply
your emissions with the area to return to the original units.

Examples

## Not run:
data(net)
data(pc_profile)
data(fkm)
PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")
# Estimation for morning rush hour and local emission factors
lef <- EmissionFactorsList(ef_cetesb("C0", "PC_G"))
E_CO <- emis(veh = pc1,lkm = net$lkm, ef = lef,
profile = 1, speed = Speed(1))
E_CO_STREETS <- emis_post(arra = E_CO, by = "streets"”, net = net)

g <- make_grid(net, 1/102.47/2) #500m in degrees

gCO <- emis_grid(spobj = E_CO_STREETS, g = g)
gC0%$emission <- gCO$V1

area <- sf::st_area(gC0)

area <- units::set_units(area, "km*2") #Check units!
gC0%$emission <- gCO$emission*area

#

\dontrun{

#do not run

library(osmdata)

library(sf)

osm <- osmdata_sf(

add_osm_feature(

opq(bbox = st_bbox(gC0)),

key = 'highway'))$osm_lines[, c("highway")]

st <- c("motorway”, "motorway_link", "trunk”, "trunk_link",
"primary”, "primary_link"”, "secondary", "secondary_link",
"tertiary"”, "tertiary_link")

osm <- osm[osm$highway %in% st, ]



100 invcop

plot(osm, axes = T)

# top_down requires name ‘emissions‘ into gCO*

xnet <- grid_emis(osm, gCO, top_down = TRUE)

plot(xnet, axes = T)

# bottom_up requires that emissions are named ‘V‘ plus the hour like ‘V1°
xnet <- grid_emis(osm, gCO,top_down= FALSE)

plot(xnet["V1"], axes = T)

3

## End(Not run)

invcop Helper function to copy and zip projects

Description

invcop help to copy and zip projects

Usage
invcop(

in_name = getwd(),
out_name,

all = FALSE,

main = TRUE,

ef = TRUE,

est = TRUE,

network = TRUE,
veh_rds = FALSE,
veh_csv = TRUE,

zip = TRUE
)
Arguments
in_name Character; Name of current project.
out_name Character; Name of outtput project.
all Logical; copy ALL (and for once) or not.
main Logical; copy or not.
ef Logical; copy or not.
est Logical; copy or not.
network Logical; copy or not.
veh_rds Logical; copy or not.
veh_csv Logical; copy or not.

zip Logical; zip or not.



inventory 101

Value

emission estimation g/h

Note

This function was created to copy and zip project without the emis.

Examples

## Not run:
# Do not run

## End(Not run)

inventory Inventory function.

Description

inventory produces an structure of directories and scripts in order to run vein. It is required to
know the vehicular composition of the fleet.

Usage

inventory(
name,
vehcomp = ¢(PC = 1, LCV = 1, HGV = 1, BUS = 1, MC = 1),
show.main = FALSE,
scripts = TRUE,
show.dir = FALSE,
show.scripts = FALSE,
clear = TRUE,
rush.hour = FALSE,
showWarnings = FALSE

)
Arguments

name Character, path to new main directory for running vein. NO BLANK SPACES

vehcomp Vehicular composition of the fleet. It is required a named numerical vector with
the names "PC", "LCV", "HGV", "BUS" and "MC". In the case that tthere are
no vehiles for one category of the composition, the name should be included
with the number zero, for example PC = 0. The maximum number allowed is
99 per category.

show.main Logical; Do you want to see the new main.R file?

scripts Logical Do you want to generate or no R scripts?



102 inventory

show.dir Logical value for printing the created directories.

show.scripts  Logical value for printing the created scripts.

clear Logical value for removing recursively the directory and create another one.
rush.hour Logical, to create a template for morning rush hour.

showWarnings  Logical, showWarnings?

Value

Structure of directories and scripts for automating compilation of vehicular emissions inventory.
The structure can be used with other type of sources of emissions. The structure of the directories
is: daily, ef, emi, est, images, network and veh. This structure is a suggestion and the user can use
another. ’ ef: it is for storing the emission factors data-frame, similar to data(fe2015) but including
one column for each of the categories of the vehicular composition. For intance, if PC = 5, there
should be 5 columns with emission factors in this file. If LCV = 5, another 5 columns should be
present, and so on.

emi: Directory for saving the estimates. It is suggested to use .rds extension instead of .rda.

est: Directory with subdirectories matching the vehicular composition for storing the scripts named
input.R.

images: Directory for saving images.

network: Directory for saving the road network with the required attributes. This file will includes
the vehicular flow per street to be used by age* functions.

veh: Directory for storing the distribution by age of use of each category of the vehicular com-
position. Those are data-frames with number of columns with the age distribution and number of
rows as the number of streets. The class of these objects is "Vehicles". Future versions of vein will
generate Vehicles objects with the explicit spatial component.

The name of the scripts and directories are based on the vehicular composition, however, there is
included a file named main.R which is just an R script to estimate all the emissions. It is important
to note that the user must add the emission factors for other pollutants. Also, this function creates
the scripts input.R where the user must specify the inputs for the estimation of emissions of each
category. Also, there is a file called traffic.R to generates objects of class "Vehicles". The user can
rename these scripts.

Examples
## Not run:

name = file.path(tempdir(), "YourCity")
inventory(name = name)

## End(Not run)



long_to_wide 103

long_to_wide Transform data.frame from long to wide format

Description

long_to_wide transform data.frame from long to wide format

Usage
long_to_wide(
df,
column_with_new_names = names(df)[1],
column_with_data = "emission”,
column_fixed,
net
)
Arguments
df data.frame with three column.

column_with_new_names
Character, column that has new column names
column_with_data

Character column with data
column_fixed Character, column that will remain fixed

net To return a sf

Value

wide data.frame.

See Also

emis_hot_td emis_cold_td wide_to_long

Examples

## Not run:

df <- data.frame(pollutant = rep(c("C0"”, "propadiene”, "N02"), 10),
emission = vein::Emissions(1:30),

region = rep(letters[1:2], 15))

df

long_to_wide(df)

long_to_wide(df, column_fixed = "region")

## End(Not run)



104 make_grid

make_grid Creates rectangular grid for emission allocation

Description

make_grid creates a sf grid of polygons. The spatial reference is taken from the spatial object.

Usage
make_grid(spobj, width, height = width, polygon, crs = 4326, ...)
Arguments
spobj A spatial object of class sp or sf.
width Width of grid cell. It is recommended to use projected values.
height Height of grid cell.
polygon Deprecated! make_grid returns only sf grid of polygons.
crs coordinate reference system in numeric format from http://spatialreference.org/
to transform/project spatial data using sf::st_transform. The default value is
4326
ignored
Value

A grid of polygons class ’sf’

Examples

## Not run:

data(net)

grid <- make_grid(net, width = 0.5/102.47) #500 mts
plot(grid, axes = TRUE) #class sf

# make grid now returns warnings for crs with form +init...
#grid <- make_grid(net, width = 0.5/102.47) #500 mts

## End(Not run)



moves_ef

105

moves_ef

MOVES emission factors

Description

moves_ef reads and filter MOVES data.frame of emission factors.

Usage

moves_ef(
ef,
vehicles,

source_type_id = 21,

process_id =
fuel_type_id
pollutant_id
road_type_id
speed_bin

Arguments

ef

vehicles
source_type_id
process_id
fuel_type_id
pollutant_id
road_type_id

speed_bin

Value

1,

=1,
:2’
35,

emission factors from EmissionRates_running exported from MOVES
Name of category, with length equal to fuel_type_id and other with id
Number to identify type of vehicle as defined by MOVES.

Number to identify emission process defined by MOVES.

Number to identify type of fuel as defined by MOVES.

Number to identify type of pollutant as defined by MOVES.

Number to identify type of road as defined by MOVES.

Data.frame or vector of avgSpeedBinID as defined by MOVES.

EmissionFactors data.frame

Note

‘decoder® shows a decoder for MOVES to identify

Examples

{
data(decoder)
decoder

3



106

moves_rpd

moves_rpd

MOVES estimation of using rates per distance

Description

moves_rpd estimates running exhaust emissions using MOVES emission factors.

Usage
moves_rpd(
veh,
1km,
ef,
fuel_type,
speed_bin,
profile,
source_type_id = 21,
fuel_type_id = 1,
pollutant_id = 91,
road_type_id = 5,
process_id = 1,
vehicle = NULL,
vehicle_type = NULL,
fuel_subtype = NULL,
net,
path_all,
verbose = FALSE
)
Arguments
veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.
1km Length of each link in miles
ef emission factors from EmissionRates_running exported from MOVES
fuel_type Data.frame of fuelSubtypelD exported by MOVES.
speed_bin Data.frame or vector of avgSpeedBinID as defined by MOVES.
profile Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week

source_type_id
fuel_type_id
pollutant_id
road_type_id

process_id

Number to identify type of vehicle as defined by MOVES.
Number to identify type of fuel as defined by MOVES.
Number to identify type of pollutant as defined by MOVES.
Number to identify type of road as defined by MOVES.
Number to identify type of pollutant as defined by MOVES.



moves_rpdy

vehicle
vehicle_type
fuel_subtype
net

path_all

verbose

Value

107

Character, type of vehicle
Character, subtype of vehicle
Character, subtype of vehicle
Road network class sf

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories. See 1ink{emis_post}

Note

‘decoder‘ shows a

Examples

{
data(decoder)
decoder

}

decoder for MOVES

moves_rpdy

MOVES estimation of using rates per distance by model year

Description

moves_rpdy estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpdy (
veh,
1km,
ef,

source_type_id

fuel_type_id
pollutant_id
road_type_id
fuel_type,
speed_bin,
profile,
vehicle,
vehicle_type,
fuel_subtype,

=1

I n
o1 O
< O



108

process_id,
net,
path_all,

moves_rpdy

verbose = FALSE

Arguments

veh

1km

ef
source_type_id
fuel_type_id
pollutant_id
road_type_id
fuel_type
speed_bin
profile
vehicle
vehicle_type
fuel_subtype
process_id
net

path_all

verbose

Value

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES
Number to identify type of vehicle as defined by MOVES.

Number to identify type of fuel as defined by MOVES.

Number to identify type of pollutant as defined by MOVES.

Number to identify type of road as defined by MOVES.

Data.frame of fuelSubtypelD exported by MOVES.

Data.frame or vector of avgSpeedBinID as defined by MOVES.
Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week
Character, type of vehicle

Character, subtype of vehicle

Character, subtype of vehicle

Character, processID

Road network class sf

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories. See 1ink{emis_post}

Note

‘decoder‘ shows a decoder for MOVES

Examples

{
data(decoder)
decoder

}



moves_rpdy_meta

109

moves_rpdy_meta

MOVES estimation of using rates per distance by model year

Description

moves_rpdy_meta estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpdy_meta(

metadata,
1km,
ef,

fuel_type,
speed_bin,

profile,

agemax = 31,

net,

simplify = TRUE,

verbose =

Arguments

metadata
1km

ef
fuel_type
speed_bin
profile
agemax
net
simplify

verbose

Value

FALSE

data.frame with the metadata for a vein project for MOVES.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES
Data.frame of fuelSubtypelD exported by MOVES.

Data.frame or vector of avgSpeedBinID as defined by MOVES.
Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week
Integer; max age for the fleet, assuming the same for all vehicles.

Road network class sf

Logical, to return the whole object or processed by streets and veh

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories.

Note

The idea is the user enter with emissions factors by pollutant



110

Examples

{
data(decoder)
decoder

}

moves_rpdy_sf

moves_rpdy_sf

MOVES estimation of using rates per distance by model year

Description

moves_rpdy_sf estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpdy_sf(
veh,
1km,
ef,
speed_bin,
profile,

source_type_id = 21,
vehicle = NULL,

vehicle_type
fuel_subtype
path_all,

= NULL,
= NULL,

verbose = FALSE

Arguments

veh

1km
ef

speed_bin
profile
source_type_id
vehicle
vehicle_type
fuel_subtype
path_all

verbose

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES filtered
by sourceTypelD and fuel TypelD.

Data.frame or vector of avgSpeedBinID as defined by MOVES.
numeric vector of normalized traffic for the morning rush hour
Number to identify type of vehicle as defined by MOVES.
Character, type of vehicle

Character, subtype of vehicle

Character, subtype of vehicle

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet



moves_rpsy_meta

Value

111

a list with emissions at each street and data.base aggregated by categories. See link{emis_post}

Note

‘decoder‘ shows a decoder for MOVES

Examples

{
data(decoder)
decoder

}

moves_rpsy_meta

MOVES estimation of using rates per start by model year

Description

moves_rpsy_meta estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpsy_meta(

metadata,
1km,

ef,
fuel_type,
profile,

agemax = 31,

net,

simplify = TRUE,

verbose =
colk,
colkt = F

Arguments

metadata
1km

ef
fuel_type
profile

agemax

FALSE,

data.frame with the metadata for a vein project for MOVES.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES
Data.frame of fuelSubtypelD exported by MOVES.

Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week

Integer; max age for the fleet, assuming the same for all vehicles.



112

net
simplify
verbose
colk
colkt

Value

moves_rpsy_sf

Road network class sf

Logical, to return the whole object or processed by streets and veh

Logical; To show more information. Not implemented yet

Character identifying a column in *metadata’ to multiply the emission factor

Logical, TRUE if ‘colk® is used

a list with emissions at each street and data.base aggregated by categories.

Note

The idea is the user enter with emissions factors by pollutant

Examples

{

data(decoder)

decoder

}

moves_rpsy_sf

MOVES estimation of using rates per start by model year

Description

moves_rpsy_sf estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpsy_sf(

veh,
1km,
ef,

profile,
source_type_id = 21,
vehicle = NULL,
vehicle_type = NULL,
fuel_subtype = NULL,
net,

path_all,

verbose = FALSE



moves_speed

Arguments

veh

1km
ef

profile
source_type_id
vehicle
vehicle_type
fuel_subtype
net

path_all

verbose

Value

113

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES filtered
by sourceTypelD and fuel TypelD.

numeric vector of normalized traffic for the morning rush hour
Number to identify type of vehicle as defined by MOVES.
Character, type of vehicle

Character, subtype of vehicle

Character, subtype of vehicle

Road network class sf

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories. See 1ink{emis_post}

Note

‘decoder‘ shows a decoder for MOVES

Examples

{
data(decoder)
decoder

}

moves_speed

Return speed bins according to US/EPA MOVES model

Description

speed_moves return an object of average speed bins as defined by US EPA MOVES. The input
must be speed as miles/h (mph)

Usage

moves_speed(x, net)



114 my_age

Arguments
X Object with class, "sf", "data.frame", "matrix" or "numeric" with speeds in
miles/h (mph)
net optional spatial dataframe of class "sf". it is transformed to "sf".
Examples
{
data(net)

net$mph <- units::set_units(net$ps, "miles/h")
net$speed_bins <- moves_speed(net$mph)
head(net)

moves_speed(net["ps"])

}

my_age Returns amount of vehicles at each age

Description

my_age returns amount of vehicles at each age using a numeric vector.

Usage

my_age(
X)
Y,
agemax,
name = "vehicle”,
k=1,
pro_street,
net,
verbose = FALSE,
namerows

Arguments

X Numeric; vehicles by street (or spatial feature).

y Numeric or data.frame; when pro_street is not available, y must be *numeric’,
else, a ’data.frame’. The names of the columns of this data.frame must be the
same of the elements of pro_street and each column must have a profile of age of
use of vehicle. When "y’ is 'numeric’ the vehicles has the same age distribution
to all street. When ’y’ is a data.frame, the distribution by age of use varies the
streets.

agemax Integer; age of oldest vehicles for that category



my_age 115

name Character; of vehicle assigned to columns of dataframe.
k Integer; multiplication factor. If its length is > 1, it must match the length of x
pro_street Character; each category of profile for each street. The length of this character

vector must be equal to the length of *x’. The names of the data.frame ’y’ must
be have the same content of ’pro_street’

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

verbose Logical; message with average age and total numer of vehicles.

namerows Any vector to be change row.names. For instance, name of regions or streets.
Value

dataframe of age distrubution of vehicles.

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or (the regis)*better) the registry of new vehicles, use age to apply a survival function.
3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or
age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know
the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

Examples

## Not run:

data(net)

dpc <- c(seq(1,20,3), 20:10)

PC_E25_1400 <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400")
class(PC_E25_1400)

plot (PC_E25_1400)

PC_E25_1400sf <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400", net = net)
class(PC_E25_1400sf)

plot (PC_E25_1400sf)

PC_E25_1400nsf <- sf::st_set_geometry(PC_E25_1400sf, NULL)
class(PC_E25_1400nsf)

yy <- data.frame(a = 1:5, b = 5:1) # perfiles por categoria de calle
pro_street <- c("a”, "b", "a") # categorias de cada calle

x <- ¢(100,5000, 3) # vehiculos

my_age(x = x, y = yy, pro_street = pro_street)

## End(Not run)



116 netspeed

net Road network of the west part of Sao Paulo city

Description

This dataset is a sf class object with roads from a traffic simulations made by CET Sao Paulo, Brazil

Usage

data(net)

Format
A Spatial data.frame (sf) with 1796 rows and 1 variables:

Idv Light Duty Vehicles (veh/h)

hdv Heavy Duty Vehicles (veh/h)

Ikm Length of the link (km)

ps Peak Speed (km/h)

ffs Free Flow Speed (km/h)

tstreet Type of street

lanes Number of lanes per link

capacity Capacity of vehicles in each link (1/h)
tmin Time for travelling each link (min)

geometry geometry

netspeed Calculate speeds of traffic network

Description

netspeed Creates a dataframe of speeds fir diferent hours and each link based on morning rush
traffic data

Usage

netspeed(
q=1,
ps,
ffs,
cap,
1km,
alpha = 0.15,



netspeed 117

beta = 4,
net,
scheme = FALSE,
dist = "km"
)
Arguments
q Data-frame of traffic flow to each hour (veh/h)
ps Peak speed (km/h)
ffs Free flow speed (km/h)
cap Capacity of link (veh/h)
1km Distance of link (km)
alpha Parameter of BPR curves
beta Parameter of BPR curves
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
scheme Logical to create a Speed data-frame with 24 hours and a default profile. It needs
ffs and ps:
dist String indicating the units of the resulting distance in speed. Default is units
from peak speed ‘ps‘
00:00-06:00  ffs
06:00-07:00 average between ffs and ps
07:00-10:00 ps
10:00-17:00  average between ffs and ps
17:00-20:00  ps
20:00-22:00 average between ffs and ps
22:00-00:00 ffs
Value

dataframe speeds with units or sf.

Examples

{

data(net)

data(pc_profile)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)

df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
class(df)

plot(df) #plot of the average speed at each hour, +- sd

# net$ps <- units::set_units(net$ps, "miles/h")

# net$ffs <- units::set_units(net$ffs, "miles/h")

# df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, alpha = 1)
# class(df)



118 pc_profile

# plot(df) #plot of the average speed at each hour, +- sd
# df <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE)
# class(df)
# plot(df) #plot of the average speed at each hour, +- sd
# dfsf <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE, net = net)
# class(dfsf)
# head(dfsf)
# plot(dfsf, pal = cptcity::lucky(colorRampPalette = TRUE, rev = TRUE),
# key.pos = 1, max.plot = 9)
}
pc_cold Profile of Vehicle start patterns
Description

This dataset is a dataframe with percetage of hourly starts with a lapse of 6 hours with engine turned
off. Data source is: Lents J., Davis N., Nikkila N., Osses M. 2004. Sao Paulo vehicle activity study.
ISSRC. www.issrc.org

Usage
data(pc_cold)

Format

A data frame with 24 rows and 1 variables:

V1 24 hours profile vehicle starts for Monday

pc_profile Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is a dataframe with traffic activity normalized monday 08:00-09:00. This data is nor-
malized at 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is
ARTESP (www.artesp.com.br)

Usage

data(pc_profile)



pollutants 119

Format

A data frame with 24 rows and 7 variables:

V1 24 hours profile for Monday
V2 24 hours profile for Tuesday
V3 24 hours profile for Wednesday
V4 24 hours profile for Thursday
VS 24 hours profile for Friday

V6 24 hours profile for Saturday
V7 24 hours profile for Sunday

pollutants Data.frame with pollutants names and molar mass used in VEIN

Description

This dataset also includes MIR, MOIR and EBIR is Carter SAPRCO7.x1s https://www.engr.ucr.edu/~carter/SAPRC/

Usage

data(pollutants)

Format

A data frame with 148 rows and 10 variables:

n Number for each pollutant, from 1 to 132

groupl classification for pollutants including "NMHC", "PAH", "METALS", "PM", "criteria" and
"PCDD"

group2 A sub classification for pollutants including "alkenes", "alkynes", "aromatics", "alkanes",
"PAH",, "aldehydes", "ketones", "METALS", "PM_char", "criteria", "cycloalkanes", "NMHC",
"PCDD", "PM10", "PM2.5"

pollutant 1 of the 132 pollutants covered

CAS CAS Registry Number

g mol molar mass

MIR Maximum incremental Reactivity (gm O3 / gm VOC)
MOIR Reactivity (gm O3 / gm VOC)

EBIR Reactivity (gm O3 / gm VOC)

notes Inform some assumption for molar mass



120 profiles

profiles Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is n a list of data-frames with traffic activity normalized monday 08:00-09:00. It comes
from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br) for
months January and June and years 2012, 2013 and 2014. The type of vehicles covered are PC,
MC, MC and HGV.

Usage

data(pc_profile)

Format
A list of data-frames with 24 rows and 7 variables:

PC_JUNE_2012 168 hours
PC_JUNE_2013 168 hours
PC_JUNE_2014 168 hours
LCV_JUNE_2012 168 hours
LCV_JUNE_2013 168 hours
LCV_JUNE_2014 168 hours
MC_JUNE_2012 168 hours
MC_JUNE_2013 168 hours
MC_JUNE_2014 168 hours
HGV_JUNE_2012 168 hours
HGV_JUNE_2013 168 hours
HGV_JUNE_2014 168 hours
PC_JANUARY_2012 168 hours
PC_JANUARY_2013 168 hours
PC_JANUARY_2014 168 hours
LCV_JANUARY_2012 168 hours
LCV_JANUARY_2013 168 hours
LCV_JANUARY_2014 168 hours
MC_JANUARY_2012 168 hours
MC_JANUARY_2014 168 hours
HGV_JANUARY_2012 168 hours
HGV_JANUARY_2013 168 hours
HGV_JANUARY_2014 168 hours



remove_units 121

remove_units Remove units

Description

remove_units Remove units from sf, data.frames, matrix or units.

Usage

remove_units(x)

Arguments

X Object with class "sf", "data.frame", "matrix" or "units"

Value

non

"sf", data.frame", "matrix" or numeric

Examples

## Not run:

ef1 <- ef_cetesb(p = "C0", c("PC_G", "PC_FE"))
class(ef1)

sapply(ef1, class)

a <- remove_units(ef1)

## End(Not run)

speciate Speciation of emissions

Description

speciate separates emissions in different compounds. It covers black carbon and organic matter
from particulate matter. Soon it will be added more speciations

Usage

speciate(
x =1,
spec = "bcom”,
veh,
fuel,
eu,
list = FALSE,
pmpar,
verbose = FALSE



122 speciate

Arguments

X Emissions estimation

spec The speciations are:
* "bcom": Splits PM2.5 in black carbon and organic matter.
* "tyre" or "tire": Splits PM in PM10, PM2.5, PM1 and PMO.1.
* "brake": Splits PM in PM10, PM2.5, PM1 and PMO.1.
* "road": Splits PM in PM10 and PM2.5.
* "nox": Splits NOx in NO and NO2.
e "nmhc": Splits NMHC in compounds, see ef _1dv_speed.
e "pmiag", "pmneu", "pmneu2": Splits PM in groups, see note below.

The following still available but they will be removed soon:
* "iag_racm": ethanol emissions added in hc3.
* "iag" or "iag_cb05": Splits NMHC by CB05 (WRF exb05_optl) group .
» "petroiag_cb05": Splits NMHC by CB05 (WRF exb05_opt1) group .
* "iag_cb05v2": Splits NMHC by CB05 (WRF exb05_opt2) group .
* "neu_cb05": Splits NMHC by CB05 (WRF exb05_opt2) group alternative.
 "petroiag_cb05v2": Splits NMHC by CB05 (WRF exb05_opt2) group al-
ternative.
veh Type of vehicle:

* "bcom": veh can be "PC", "LCV", HDV" or "Motorcycle".
* "tyre" or "tire": not necessary.

e "brake": not necessary.

* "road": not necessary.

* "nox": veh can be "PC", "LCV", HDV" or "Motorcycle".

e "nmhc": veh can be "LDV", "HDV" or "LPG".

nn non non

e ""pmiag", "pmneu", "pmneu2": not necessary.

# The following still available but they will be removed soon:

* "iag_racm": veh accepts "veh".

* "iag" or "iag_cb05": veh accepts "veh" .

* "iag_cb05v2": veh accepts "veh" .

* "neu_cb05": veh accepts "veh" .

* "petroiag_cb05": veh accepts "veh" .

* "petroiag_cb05v2": veh accepts "veh" .
fuel Fuel.

* "bcom": "G" or "D".

e "tyre" or "tire": not necessary.

* "brake": not necessary.

* "road": not necessary.

* "nox": "G", "D", "LPG", "E85" or "CNG".

e "nmhc": "G", "D" or "LPG".



speciate

eu

list

pmpar

verbose

Value

®

123

non "non

* "pmiag", "pmneu", "pmneu2": not necessary.

The following still available but they will be removed soon:
* "iag_racm": "G", "E" or "D".

* "iag" or "iag_cb05": "G", "E" or "D".

* "iag_cb05v2": "G", "E" or "D".

* "neu_cb05": "G", "E" or "D".

* "petroiag_cb05": "G", "E" or "D".

* "petroiag_cb05v2": "G", "E" or "D".

Emission standard

¢ "bcom": "G" or "D".

e "tyre" or "tire": not necessary.

* "brake": not necessary.

e "road": not necessary.

e "nox": "G", "D", "LPG", "E85" or "CNG".

* "nmhc": "PRE", "ECE_1501", "ECE_1502", "ECE_1503","T", "II", "TII",
"V, "V", "III-CDFP","TV-CDFP","V-CDFP", "III-ADFP", "IV-ADFP"," V-
ADFP" or "OPEN_LOOP". eu can be "ALL" if spec is "nmhc" and fuel is
"LPG"

non "non

e "pmiag", "pmneu", "pmneu2": not necessary.

The following still available but they will be removed soon:
* "iag_racm": "Exhaust", "Evaporative" or "Liquid".

* "iag" or "iag_cb05": "Exhaust", "Evaporative" or "Liquid".
* "iag_cb05v2": "Exhaust", "Evaporative" or "Liquid".

* "neu_cb05": "Exhaust", "Evaporative" or "Liquid".
 "petroiag_cb05": "Exhaust", "Evaporative" or "Liquid".

* "petroiag_cb05v2": "Exhaust", "Evaporative" or "Liquid".

when TRUE returns a list with number of elements of the list as the number
species of pollutants

Numeric vector for PM speciation eg: c(e_so4i = 0.0077, e_so4j = 0.0623,
e_no3i = 0.00247, e_no3j = 0.01053, e_pm25i = 0.1, e_pm25j = 0.3, e_orgi
=0.0304, e_orgj = 0.1296, e_eci = 0.056, e_ecj = 0.024, h20 = 0.277) These are
default values. however, when this argument is present, new values are used.

Logical to show more information

dataframe of speciation in grams or mols

Note

spec ''pmiag'' speciate pm2.5 into e_so4i, e_so4j, e_no3i, e_no3j, e_mp2.5i, e_mp2.5j, e_orgi,
e_orgj, e_eci, e_ecj and h20. Reference: Rafee, S.: Estudo numerico do impacto das emissoes
veiculares e fixas da cidade de Manaus nas concentracoes de poluentes atmosfericos da regiao
amazonica, Master thesis, Londrina: Universidade Tecnologica Federal do Parana, 2015.



124 speciate

specs: "neu_cb05", "pmneu" and "pmneu2"” provided by Daniel Schuch, from Northeastern Univer-
sity

Speciation with fuels ""E25", ""E100" and ""BS" made by Prof. Leila Martins (UTFPR), represents
BRAZILIAN fuel

pmiag? pass the mass only on j fraction

References

"bcom": Ntziachristos and Zamaras. 2016. Passneger cars, light commercial trucks, heavy-duty
vehicles including buses and motor cycles. In: EEA, EMEP. EEA air pollutant emission inventory
guidebook-2009. European Environment Agency, Copenhagen, 2016

"tyre", "brake" and "road": Ntziachristos and Boulter 2016. Automobile tyre and brake wear and
road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European
Environment Agency, Copenhagen, 2016

"iag": Ibarra-Espinosa S. Air pollution modeling in Sao Paulo using bottom-up vehicular emissions
inventories. 2017. PhD thesis. Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Uni-
versidade de Sao Paulo, Sao Paulo, page 88. Speciate EPA: https://cfpub.epa.gov/speciate/. : K.
Sexton, H. Westberg, "Ambient hydrocarbon and ozone measurements downwind of a large auto-
motive painting plant" Environ. Sci. Tchnol. 14:329 (1980).P.A. Scheff, R.A. Schauer, James J.,
Kleeman, Mike J., Cass, Glen R., Characterization and Control of Organic Compounds Emitted
from Air Pollution Sources, Final Report, Contract 93-329, prepared for California Air Resources
Board Research Division, Sacramento, CA, April 1998. 2004 NPRI National Databases as of April
25, 2006, http://www.ec.gc.ca/pdb/npri/npri_dat_rep_e.cfm. Memorandum Proposed procedures
for preparing composite speciation profiles using Environment Canada s National Pollutant Release
Inventory (NPRI) for stationary sources, prepared by Ying Hsu and Randy Strait of E.H. Pechan
Associates, Inc. for David Niemi, Marc Deslauriers, and Lisa Graham of Environment Canada,
September 26, 2006.

Examples

## Not run:

# Do not run

pm <- rnorm(n = 100, mean = 400, sd = 2)

(df <- speciate(pm, veh = "PC", fuel = "G", eu = "I"))

(df <- speciate(pm, spec = "brake"”, veh = "PC", fuel = "G", eu = "I"))

(dfa <- speciate(pm, spec = "iag", veh = "veh"”, fuel = "G", eu = "Exhaust"))

(dfb <- speciate(pm, spec = "iag_cb@5v2", veh = "veh", fuel = "G", eu = "Exhaust"))

(dfb <- speciate(pm, spec = "neu_cb@5", veh = "veh", fuel = "G", eu = "Exhaust"))

pm <- units::set_units(pm, "g/km*2/h")

#(dfb <- speciate(as.data.frame(pm), spec = "pmiag"”, veh = "veh", fuel = "G", eu = "Exhaust"))
#(dfb <- speciate(as.data.frame(pm), spec = "pmneu”, veh = "veh", fuel = "G", eu = "Exhaust"))
#(dfb <- speciate(as.data.frame(pm), spec = "pmneu2”, veh = "veh”, fuel = "G", eu = "Exhaust"))
# new

(pah <- speciate(spec = "pah"”, veh = "LDV", fuel = "G", eu = "I"))

(xs <- speciate(spec = "pcdd”, veh = "LDV", fuel = "G", eu = "I"))

(xs <- speciate(spec = "pmchar”, veh = "LDV", fuel = "G", eu = "I"))

(xs <- speciate(spec = "metals”, veh = "LDV", fuel = "G", eu = "all"))

## End(Not run)



Speed

125

Speed

Construction function for class "Speed"

Description

Speed returns a tranformed object with class "Speed" and units km/h. This functions includes two

arguments, distance and time. Therefore, it is posibel to change the units of the speed to "m"

nan

to’'s

for example. This function returns a dataframe with units for speed. When this function is applied
to numeric vectors it add class "units".

Usage

Speed(x,

., dist = "km”, time = "h")

## S3 method for class 'Speed'’
print(x,

)

## S3 method for class 'Speed'’
summary (object,

L)

## S3 method for class 'Speed'

plot(

X,

pal = "mpl_inferno”,

rev = FALSE,

figl = c(0, 0.8, 0, 0.8),

fig2 = c(@, 0.8, 0.55, 1),

fig3 = c(0.7, 1, 0, 0.8),

mail = c(0.2, 0.82, 0.82, 0.42),

mai2 = c(1.3, 0.82, 0.82, 0.42),

mai3 = c(0.7, 0.62, 0.82, 0.42),

bias = 1.5,
)

Arguments
X Object with class "data.frame", "matrix" or "numeric"
ignored Default is units is "km"

dist String indicating the units of the resulting distance in speed.
time Character to be the time units as denominator, default is "h"
object Object with class "Speed"”
pal Palette of colors available or the number of the position
rev Logical; to internally revert order of rgb color vectors.
figl par parameters for fig, par.



126 split_emis

fig2 par parameters for fig, par.

fig3 par parameters for fig, par.

mail par parameters for mai, par.

mai2 par parameters for mai, par.

mai3 par parameters for mai, par.

bias positive number. Higher values give more widely spaced colors at the high end.
Value

Constructor for class "Speed" or "units"

Note

default time unit for speed is hour

See Also

units

Examples

{

data(net)

data(pc_profile)

speed <- Speed(net$ps)

class(speed)

plot(speed, type = "1")

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)

df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm)
summary (df)

plot(df)

# changing to miles

net$ps <- units::set_units(net$ps, "miles/h")

net$ffs <- units::set_units(net$ffs, "miles/h")

net$lkm <- units::set_units(net$lkm, "miles”)

df <- netspeed(pc_week, net$ps, net$ffs, net$capacity, net$lkm, dist = "miles”)
plot(df)

}

split_emis Split street emissions based on a grid

Description

split_emis split street emissions into a grid.



temp_fact 127

Usage

split_emis(net, distance, add_column, verbose = TRUE)

Arguments
net A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf" with emissions.
distance Numeric distance or a grid with class "sf".
add_column Character indicating name of column of distance. For instance, if distance is an
sf object, and you wand to add one extra column to the resulting object.
verbose Logical, to show more information.
Examples
## Not run:
data(net)
g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)
dim(net)

netsf <- sf::st_as_sf(net)[, "ldv"]

x <- split_emis(net = netsf, distance = g)

dim(x)

g$A <- rep(letters, length = 20)[1:nrow(g)]

g$B <- rev(g$A)

netsf <- sf::st_as_sf(net)[, c("ldv"”, "hdv")]

xx <- split_emis(netsf, g, add_column = c("A", "B"))

## End(Not run)

temp_fact Expansion of hourly traffic data

Description
temp_fact is a matrix multiplication between traffic and hourly expansion data-frames to obtain a
data-frame of traffic at each link to every hour

Usage

temp_fact(q, pro, net, time)

Arguments
q Numeric; traffic data per each link
pro Numeric; expansion factors data-frames
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

time Character to be the time units as denominator, eg "1/h"



128 to_latex

Value

data-frames of expanded traffic or sf.

Examples

## Not run:

# Do not run

data(net)

data(pc_profile)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
plot(pc_week)

pc_weeksf <- temp_fact(net$ldv+net$hdv, pc_profile, net = net)
plot(pc_weeksf)

## End(Not run)

to_latex creates a .tex a table from a data.frame

Description
to_latex reads a data.frme an dgenerates a .tex table, aiming to replicate the method of tablegen-
erator.com

Usage

to_latex(df, file, caption = "My table”, label = "tab:df")

Arguments
df data.frame with three column.
file Character, name of new .tex file
caption Character caption of table
label Character, label of table

Value

a text file with extension .tex.

See Also

vein_notes long_to_wide



Vehicles 129

Examples

## Not run:

df <- data.frame(pollutant = rep(c("C0"”, "propadiene”, "N02"), 10),
emission = vein::Emissions(1:30),
region = rep(letters[1:2], 15))

df

long_to_wide(df)

(df2 <- long_to_wide(df, column_fixed = "region"))

to_latex(df2)

to_latex(long_to_wide(df, column_fixed = "region"),

file = paste@(tempfile(), ".tex"))

## End(Not run)

Vehicles Construction function for class "Vehicles"

Description

Vehicles returns a tranformed object with class "Vehicles" and units ’veh’. The type of objects

"non

supported are of classes "matrix", "data.frame", "numeric" and "array". If the object is a matrix it is
converted to data.frame. If the object is "numeric" it is converted to class "units".

Usage
Vehicles(x, ..., time = NULL)

## S3 method for class 'Vehicles'
print(x, ...)

## S3 method for class 'Vehicles'
summary (object, ...)

## S3 method for class 'Vehicles'

plot(
X,
pal = "colo_lightningmccarl_into_the_night"”,
rev = TRUE,
bk = NULL,
figl = c(0, 0.8, 0, 0.8),
fig2 = c(0, 0.8, 9.55, 1),
fig3 = c(0.7, 1, 0, 0.8),
mail = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.62, 0.82, 0.42),
bias = 1.5,



130

Arguments

X

time
object
pal
rev
bk
figl
fig2
fig3
mail
mai2
mai3

bias

Value

vein_notes

Object with class "Vehicles"

ignored

Character to be the time units as denominator, eg "1/h"
Object with class "Vehicles"

Palette of colors available or the number of the position
Logical; to internally revert order of rgb color vectors.
Break points in sorted order to indicate the intervals for assigning the colors.
par parameters for fig, par.

par parameters for fig, par.

par parameters for fig, par.

par parameters for mai, par.

par parameters for mai, par.

par parameters for mai, par.

positive number. Higher values give more widely spaced colors at the high end.

Objects of class "Vehicles" or "units"

Examples

## Not run:

1t <- rnorm(100, 300, 10)

class(1t)

vlt <- Vehicles(1lt)

class(vlt)
plot(vlt)

LT_B5 <- age_hdv(x = 1lt,name = "LT_B5")

summary (LT_B5)
plot(LT_B5)

## End(Not run)

vein_notes

Notes with sysinfo

Description

vein_notes creates aa text file ’.txt’ for writting technical notes about this emissions inventory



vein_notes 131

Usage

vein_notes(
notes,
file = "README",
yourname = Sys.info()["login"],
title = "Notes for this VEIN run”,

approach = "Top Down",
traffic = "Your traffic information”,
composition = "Your traffic information”,
ef = "Your information about emission factors”,
cold_start = "Your information about cold starts”,
evaporative = "Your information about evaporative emission factors”,
standards = "Your information about standards”,
mileage = "Your information about mileage"”
)
Arguments
notes Character; vector of notes.
file Character; Name of the file. The function will generate a file with an extension
’xt’.
yourname Character; Name of the inventor compiler.
title Character; Title of this file. For instance: "Vehicular Emissions Inventory of
Region XX, Base year XX"
approach Character; vector of notes.
traffic Character; vector of notes.
composition Character; vector of notes.
ef Character; vector of notes.
cold_start Character; vector of notes.
evaporative Character; vector of notes.
standards Character; vector of notes.
mileage Character; vector of notes.
Value

Werites a text file.

Examples

## Not run:

#do not run

a <- "delete"

f <- vein_notes("notes”, file = a)
file.remove(f)

## End(Not run)



132

vkm

vkm Estimation of VKM

Description

vkm consists in the product of the number of vehicles and the distance driven by these vehicles in

km. This function reads hourly vehiles and then extrapolates the vehicles

Usage

vkm(
veh,
1km,
profile,
hour = nrow(profile),
day = ncol(profile),

array = TRUE,
as_df = TRUE
)
Arguments
veh Numeric vector with number of vehicles per street
1km Length of each link (km)
profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour Number of considered hours in estimation
day Number of considered days in estimation
array When FALSE produces a dataframe of the estimation. When TRUE expects
a profile as a dataframe producing an array with dimensions (streets x hours x
days)
as_df Logical; when TRUE transform returning array in data.frame (streets x hour*days)
Value

emission estimation of vkm

Examples

## Not run:

# Do not run

pc <- 1lkm <- abs(rnorm(10,1,1))*100

pro <- matrix(abs(rnorm(24x7,0.5,1)), ncol=7, nrow=24)

vkms <- vkm(veh = pc, 1lkm = lkm, profile = pro)

class(vkms)

dim(vkms)

vkms2 <- vkm(veh = pc, lkm = lkm, profile = pro, as_df = FALSE)



wide_to_long 133

class(vkms2)
dim(vkms2)

## End(Not run)

wide_to_long Transform data.frame from wide to long format

Description

wide_to_long transform data.frame from wide to long format

Usage

wide_to_long(df, column_with_data = names(df), column_fixed, geometry)

Arguments

df data.frame with three column.
column_with_data

Character column with data
column_fixed Character, column that will remain fixed

geometry To return a sf

Value

long data.frame.

See Also

emis_hot_td emis_cold_td long_to_wide

Examples

## Not run:

data(net)

net <- sf::st_set_geometry(net, NULL)
df <- wide_to_long(df = net)

head (df)

## End(Not run)



Index

+ Add distance unitts
add_1lkm, 4
add_miles, 4

* China
ef_china, 23

* age
age, 7
age_hdv, 9
age_ldv, 11
age_moto, 12

* cold
cold_mileage, 17
ef_ldv_cold, 37
ef_ldv_cold_list, 39

* cumileage
ef_nitro, 47

+ datasets
decoder, 19
fe2015, 92
fkm, 93
net, 116
pc_cold, 118
pc_profile, 118
pollutants, 119
profiles, 120

x deterioration

emis_det, 68
* ef _china
ef_china, 23
* emission
ef_cetesb, 20
ef_china, 23
ef_eea, 27

ef_hdv_scaled, 31
ef_hdv_speed, 32
ef_im, 34

ef_ive, 35
ef_ldv_cold, 37
ef_ldv_cold_list, 39

134

ef_ldv_scaled, 40
ef_ldv_speed, 41

ef_local, 46
ef_nitro, 47
ef_whe, 49
emis_det, 68

* emitters
ef_whe, 49

* factors
ef_cetesb, 20
ef_china, 23
ef_eea, 27

ef_hdv_scaled, 31
ef_hdv_speed, 32
ef_im, 34
ef_ive, 35
ef_ldv_cold, 37
ef_ldv_cold_list, 39
ef_ldv_scaled, 40
ef_ldv_speed, 41
ef_local, 46
ef_nitro, 47
ef_whe, 49
emis_det, 68

+ high
ef_whe, 49

* ive
ef_ive, 35

+ mileage
cold_mileage, 17
ef_im, 34

* speed
ef_hdv_scaled, 31
ef_hdv_speed, 32
ef_ive, 35
ef_ldv_scaled, 40
ef_ldv_speed, 41

* start
ef_ldv_cold_list, 39



INDEX

* units
remove_units, 121

add_lkm, 4, 5

add_miles, 4, 4
add_polid, 5, 5, 91

adt, 6,6

age, 7,7,8,10,12-14, 115
age_hdv, 8, 9,9, 10, 12-14, 115
age_ldv, 8,10, 11,11, 12-14,115
age_moto, 8, 10, 12,12, 13,115
aw, 14, 14

celsius, 15
check_nt, 16, 51,67, 78
cold_mileage, 17
colplot, 17,17

decoder, 19

ef_cetesb, 20, 20, 27, 46, 47
ef_china, 23, 23,77, 78
ef_eea, 27
ef_evap, 28, 28,61, 72
ef_fun, 30, 30
ef_hdv_scaled, 31/, 31
ef_hdv_speed, 32, 60, 61
ef_im, 34, 34

ef_ive, 35, 35
ef_ldv_cold, 34, 37,37, 43, 66, 67
ef_ldv_cold_list, 39
ef_ldv_scaled, 40
ef_ldv_speed, 25,41, 41, 60, 61, 78, 122
ef_local, 45, 46

ef_nitro, 47,47

ef_wear, 48, 48

ef_whe, 49, 49

emis, 34,43, 50, 50
emis_chem, 60, 60
emis_chem2, 61, 61
emis_cold, 63, 64
emis_cold_td, 66, 66, 103, 133
emis_det, 34, 68, 69
emis_dist, 70, 70, 98
emis_evap, 71,71
emis_evap2, 73
emis_grid, 75, 76, 98
emis_hot_td, 25, 77,77, 103, 133
emis_merge, 82, 82

135

emis_order, 83
emis_paved, 85
emis_post, 82, 87
emis_source, 89, 89
emis_to_streets, 5, 90, 90
emis_wear, 91
EmissionFactors, 54
EmissionFactorsList, 56
Emissions, 57
EmissionsArray, 59

fe2015, 92
fkm, 93
fuel_corr, 33, 34, 38, 42, 43, 94

get_project, 95,95
grid_emis, 98, 98
GriddedEmissionsArray, 84, 96

invcop, 100
inventory, 101

long_to_wide, 7103, 103, 128, 133

make_grid, 104, 104
moves_ef, 105, 105
moves_rpd, 106, 106
moves_rpdy, 107, 107
moves_rpdy_meta, 109, 109
moves_rpdy_sf, 110, 110
moves_rpsy_meta, 111,111
moves_rpsy_sf, 112,112
moves_speed, 113
my_age, 8, 10,12, 13,114,115

net, 116
netspeed, 116

par, 18, 19, 55, 58, 125, 126, 130

pc_cold, 118

pc_profile, 118

plot.EmissionFactors (EmissionFactors),
54

plot.EmissionFactorsList
(EmissionFactorsList), 56

plot.Emissions (Emissions), 57

plot.EmissionsArray (EmissionsArray), 59

plot.GriddedEmissionsArray
(GriddedEmissionsArray), 96

plot.Speed (Speed), 125



136

plot.Vehicles (Vehicles), 129
pollutants, 119
print.EmissionFactors
(EmissionFactors), 54
print.EmissionFactorsList
(EmissionFactorsList), 56
print.Emissions (Emissions), 57
print.EmissionsArray (EmissionsArray),
59
print.GriddedEmissionsArray
(GriddedEmissionsArray), 96
print.Speed (Speed), 125
print.Vehicles (Vehicles), 129
profiles, 120

remove_units, 121, 121

speciate, 33, 34,43, 61, 63, 121
Speed, 125
split_emis, 126, 126
summary.EmissionFactors
(EmissionFactors), 54
summary.EmissionFactorsList
(EmissionFactorsList), 56
summary.Emissions (Emissions), 57
summary .EmissionsArray
(EmissionsArray), 59
summary.GriddedEmissionsArray
(GriddedEmissionsArray), 96
summary . Speed (Speed), 125
summary.Vehicles (Vehicles), 129

temp_fact, 127
title, I8
to_latex, 128, 128

units, 126

Vehicles, 129
vein_notes, 128, 130, 130
vkm, 132

weekly (emis_order), 83
wide_to_long, 103, 133, 133

INDEX



	add_lkm
	add_miles
	add_polid
	adt
	age
	age_hdv
	age_ldv
	age_moto
	aw
	celsius
	check_nt
	cold_mileage
	colplot
	decoder
	ef_cetesb
	ef_china
	ef_eea
	ef_evap
	ef_fun
	ef_hdv_scaled
	ef_hdv_speed
	ef_im
	ef_ive
	ef_ldv_cold
	ef_ldv_cold_list
	ef_ldv_scaled
	ef_ldv_speed
	ef_local
	ef_nitro
	ef_wear
	ef_whe
	emis
	EmissionFactors
	EmissionFactorsList
	Emissions
	EmissionsArray
	emis_chem
	emis_chem2
	emis_cold
	emis_cold_td
	emis_det
	emis_dist
	emis_evap
	emis_evap2
	emis_grid
	emis_hot_td
	emis_merge
	emis_order
	emis_paved
	emis_post
	emis_source
	emis_to_streets
	emis_wear
	fe2015
	fkm
	fuel_corr
	get_project
	GriddedEmissionsArray
	grid_emis
	invcop
	inventory
	long_to_wide
	make_grid
	moves_ef
	moves_rpd
	moves_rpdy
	moves_rpdy_meta
	moves_rpdy_sf
	moves_rpsy_meta
	moves_rpsy_sf
	moves_speed
	my_age
	net
	netspeed
	pc_cold
	pc_profile
	pollutants
	profiles
	remove_units
	speciate
	Speed
	split_emis
	temp_fact
	to_latex
	Vehicles
	vein_notes
	vkm
	wide_to_long
	Index

